Nothing
hpc <- hpc_data[1:150, c(2:5, 8)]
test_that('updating', {
expect_snapshot(
mlp(mode = "classification", hidden_units = 2) %>%
set_engine("nnet", Hess = FALSE) %>%
update(hidden_units = tune(), Hess = tune())
)
})
test_that('bad input', {
expect_snapshot(error = TRUE, mlp(mode = "time series"))
expect_snapshot(error = TRUE, translate(mlp(mode = "classification") %>% set_engine("wat?")))
expect_warning(
translate(mlp(mode = "regression") %>% set_engine("nnet", formula = y ~ x)),
class = "parsnip_protected_arg_warning"
)
})
test_that("nnet_softmax", {
obj <- mlp(mode = 'classification')
obj$lvls <- c("a", "b")
res <- nnet_softmax(matrix(c(.8, .2)), obj)
expect_equal(names(res), obj$lvls)
expect_equal(res$b, 1 - res$a)
})
test_that("more activations for brulee", {
skip_if_not_installed("brulee", minimum_version = "0.3.0")
skip_on_cran()
data(ames, package = "modeldata")
ames$Sale_Price <- log10(ames$Sale_Price)
set.seed(122)
in_train <- sample(1:nrow(ames), 2000)
ames_train <- ames[ in_train,]
ames_test <- ames[-in_train,]
set.seed(1)
fit <-
try(
mlp(penalty = 0.10, activation = "softplus") %>%
set_mode("regression") %>%
set_engine("brulee") %>%
fit_xy(x = as.matrix(ames_train[, c("Longitude", "Latitude")]),
y = ames_train$Sale_Price),
silent = TRUE)
expect_true(inherits(fit$fit, "brulee_mlp"))
})
test_that("check_args() works", {
skip_if_not_installed("keras")
expect_snapshot(
error = TRUE,
{
spec <- mlp(penalty = -1) %>%
set_engine("keras") %>%
set_mode("classification")
fit(spec, class ~ ., hpc)
}
)
expect_snapshot(
error = TRUE,
{
spec <- mlp(dropout = -1) %>%
set_engine("keras") %>%
set_mode("classification")
fit(spec, class ~ ., hpc)
}
)
expect_snapshot(
error = TRUE,
{
spec <- mlp(dropout = 1, penalty = 3) %>%
set_engine("keras") %>%
set_mode("classification")
fit(spec, class ~ ., hpc)
}
)
})
# ------------------------------------------------------------------------------
test_that("tunables", {
expect_snapshot(
mlp() %>%
set_engine("brulee") %>%
tunable()
)
expect_snapshot(
mlp() %>%
set_engine("brulee_two_layer") %>%
tunable()
)
expect_snapshot(
mlp() %>%
set_engine("nnet") %>%
tunable()
)
expect_snapshot(
mlp() %>%
set_engine("keras") %>%
tunable()
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.