Nothing
#' Check if object is of class peakPantheR_curveFit
#'
#' Check if object is of class peakPantheR_curveFit
#' @param x object to test
#' @return (bool) TRUE or FALSE
is.peakPantheR_curveFit <- function(x){inherits(x, "peakPantheR_curveFit")}
#' Curve fitting using minpack.lm
#'
#' Fit different curve models using minpack. Fitting parameters can be passed or guessed.
#'
#' @param x (numeric) x values (e.g. retention time)
#' @param y (numeric) y observed values (e.g. spectra intensity)
#' @param curveModel (str) name of the curve model to fit (currently \code{skewedGaussian})
#' @param params (list or str) either 'guess' for automated parametrisation or list of initial parameters ($init_params), lower parameter bounds ($lower_bounds) and upper parameter bounds ($upper_bounds)
#'
#' @return A 'peakPantheR_curveFit': a list of fitted curve parameters, \code{fitStatus} from \code{nls.lm$info} and curve shape name \code{curveModel}. \code{fitStatus=0} unsuccessful completion: improper input parameters, \code{fitStatus=1} successful completion: first convergence test is successful, \code{fitStatus=2} successful completion: second convergence test is successful, \code{fitStatus=3} successful completion: both convergence test are successful, \code{fitStatus=4} questionable completion: third convergence test is successful but should be carefully examined (maximizers and saddle points might satisfy), \code{fitStatus=5} unsuccessful completion: excessive number of function evaluations/iterations
#'
#' @examples
#' \dontrun{
#' ## x is retention time, y corresponding intensity
#' input_x <- c(3362.102, 3363.667, 3365.232, 3366.797, 3368.362, 3369.927, 3371.492, 3373.057,
#' 3374.622, 3376.187, 3377.752, 3379.317, 3380.882, 3382.447, 3384.012, 3385.577,
#' 3387.142, 3388.707, 3390.272, 3391.837, 3393.402, 3394.966, 3396.531, 3398.096,
#' 3399.661, 3401.226, 3402.791, 3404.356, 3405.921, 3407.486, 3409.051)
#' input_y <- c(51048, 81568, 138288, 233920, 376448, 557288, 753216, 938048, 1091840, 1196992,
#' 1261056, 1308992, 1362752, 1406592, 1431360, 1432896, 1407808, 1345344, 1268480,
#' 1198592, 1126848, 1036544, 937600, 849792, 771456, 692416, 614528, 546088, 492752,
#' 446464, 400632)
#'
#' ## Fit
#' fitted_curve <- fitCurve(input_x, input_y, curveModel='skewedGaussian', params='guess')
#'
#' ## Returns the optimal fitting parameters
#' fitted_curve
#' #
#' # $amplitude
#' # [1] 275371.1
#' #
#' # $center
#' # [1] 3382.577
#' #
#' # $sigma
#' # [1] 0.07904697
#' #
#' # $gamma
#' # [1] 0.001147647
#' #
#' # $fitStatus
#' # [1] 2
#' #
#' # $curveModel
#' # [1] "skewedGaussian"
#' #
#' # attr(,"class")
#' # [1] "peakPantheR_curveFit"
#' }
fitCurve <- function(x, y, curveModel='skewedGaussian', params='guess') {
## Check inputs
# x and y length
if (length(x) != length(y)) {
stop('Error: length of "x" and "y" must match!')
}
# known curveModel
known_curveModel <- c('skewedGaussian')
if (!(curveModel %in% known_curveModel)) {
stop(paste('Error: "curveModel" must be one of:', known_curveModel))
}
# params
if (!(typeof(params) %in% c('list', 'character'))) {
stop('Error: "params" must be a list or "guess"')
}
useGuess = TRUE
if (any(params != "guess")) {
useGuess = FALSE
# check init_params, lower and upper bounds are defined
if (!all(c("init_params", "lower_bounds", "upper_bounds") %in% names(params))) {
stop('Error: "params must be a list of "init_params", "lower_bounds" and "upper_bounds"')
}
# init_params is list
if (typeof(params$init_params) != 'list') {
stop('Error: "params$init_params" must be a list of parameters')
}
# lower_bounds is list
if (typeof(params$lower_bounds) != 'list') {
stop('Error: "params$lower_bounds" must be a list of parameters')
}
# upper_bounds is list
if (typeof(params$upper_bounds) != 'list') {
stop('Error: "params$upper_bounds" must be a list of parameters')
}
}
## Init
fittedCurve <- list()
## Run fitting
# skewed gaussian
if (curveModel == 'skewedGaussian') {
# Guess parameters and bounds
if (useGuess) {
new_params <- skewedGaussian_guess(x, y)
} else {
new_params <- params
}
# ensure order of init params and bounds (init is a list, lower and upper are ordered numeric vectors)
init <- list(amplitude = new_params$init_params$amplitude,
center = new_params$init_params$center,
sigma = new_params$init_params$sigma,
gamma = new_params$init_params$gamma)
lower <- unlist( c(new_params$lower_bounds['amplitude'], new_params$lower_bounds['center'], new_params$lower_bounds['sigma'], new_params$lower_bounds['gamma']) )
upper <- unlist( c(new_params$upper_bounds['amplitude'], new_params$upper_bounds['center'], new_params$upper_bounds['sigma'], new_params$upper_bounds['gamma']) )
# perform fit
resultFit <- minpack.lm::nls.lm(par=init, lower=lower, upper=upper, fn=skewedGaussian_minpack.lm_objectiveFun, observed=y, xx=x)
# prepare output
fittedCurve <- resultFit$par
fittedCurve$fitStatus <- resultFit$info
fittedCurve$curveModel <- curveModel
class(fittedCurve) <- 'peakPantheR_curveFit'
}
# for future curve shapes
#} else if () {
#}
return(fittedCurve)
}
#' Predict curve values
#'
#' Evaluate fitted curve values at \code{x} data points
#'
#' @param fittedCurve (peakPantheR_curveFit) A 'peakPantheR_curveFit': a list of curve fitting parameters, curve shape model \code{curveModel} and nls.lm fit status \code{fitStatus}.
#' @param x (numeric) values at which to evaluate the fitted curve
#'
#' @return fitted curve values at x
#'
#' @examples
#' \dontrun{
#' ## Input a fitted curve
#' fittedCurve <- list(amplitude=275371.1, center=3382.577, sigma=0.07904697, gamma=0.001147647,
#' fitStatus=2, curveModel="skewedGaussian")
#' class(fittedCurve) <- 'peakPantheR_curveFit'
#' input_x <- c(3290, 3300, 3310, 3320, 3330, 3340, 3350, 3360, 3370, 3380, 3390, 3400, 3410)
#'
#' ## Predict y at each input_x
#' pred_y <- predictCurve(fittedCurve, input_x)
#' pred_y
#' # [1] 2.347729e-08 1.282668e-05 3.475590e-03 4.676579e-01 3.129420e+01 1.043341e+03 1.736915e+04
#' # [8] 1.447754e+05 6.061808e+05 1.280037e+06 1.369651e+06 7.467333e+05 2.087477e+05
#' }
predictCurve <- function(fittedCurve, x) {
# Check input
if (!is.peakPantheR_curveFit(fittedCurve)) {
stop('Error: "fittedCurve" must be a peakPantheR_curveFit!')
}
known_curveModel <- c('skewedGaussian')
if (!(fittedCurve$curveModel %in% known_curveModel)) {
stop(paste('Error: "fittedCurve$curveModel" must be one of:', known_curveModel))
}
# Select correct model
if (fittedCurve$curveModel == 'skewedGaussian') {
yy <- skewedGaussian_minpack.lm(params=fittedCurve, xx=x)
} # for future curve shapes
#} else if () {
#}
return(yy)
}
## --------------------------------------------------------------------------------------------------
## Skewed Gaussian
## --------------------------------------------------------------------------------------------------
#' Gaussian Error function
#'
#' Implementation of the gaussian error function
#'
#' @param x (numeric) value at which to evaluate the gaussian error function
#'
#' @return Value of the gaussian error function evaluated at x
skew_erf <- function(x){
return(2 * stats::pnorm(x * sqrt(2)) - 1)
}
#' Implementation of the Skewed Gaussian peak shape for use with minpack.lm
#'
#' Implementation of the Skewed Gaussian peak shape for use with minpack.lm
#'
#' @param params (list) skewed gaussian parameters (\code{params$gamma}, \code{params$center}, \code{params$sigma}, \code{params$amplitude})
#' @param xx (numeric) values at which to evalute the skewed gaussian
#'
#' @return value of the skewed gaussian evaluated at xx
skewedGaussian_minpack.lm <- function(params, xx) {
erf_term <- 1 + skew_erf((params$gamma * (xx - params$center)) / params$sigma * sqrt(2))
yy <- (params$amplitude / (params$sigma * sqrt(2* pi))) * exp(-(xx - params$center)^2 / 2*params$sigma^2) * erf_term
return(yy)
}
#' Skewed Gaussian minpack.lm objective function
#'
#' Skewed Gaussian minpack.lm objective function, calculates residuals using the skewed gaussian Peak Shape
#'
#' @param params (list) skewed gaussian parameters (\code{params$gamma}, \code{params$center}, \code{params$sigma}, \code{params$amplitude})
#' @param observed (numeric) observed y value at xx
#' @param xx (numeric) value at which to evalute the skewed gaussian
#'
#' @return difference between observed and expected skewed gaussian value evaluated at xx
skewedGaussian_minpack.lm_objectiveFun <- function(params, observed, xx) {
return(observed - skewedGaussian_minpack.lm(params, xx))
}
#' Guess function for initial skewed gaussian parameters and bounds
#'
#' Guess function for initial skewed gaussian parameters and bounds, at the moment only checks the x position
#'
#' @param x (numeric) x values (e.g. retention time)
#' @param y (numeric) y observed values (e.g. spectra intensity)
#'
#' @return A list of guessed starting parameters \code{list()$init_params}, lower \code{list()$lower_bounds} and upper bounds \code{list()$upper_bounds} (\code{$gamma}, \code{$center}, \code{$sigma}, \code{$amplitude})
skewedGaussian_guess <- function(x, y) {
# set center as x position of max y value (e.g. highest spectra intensity)
center_guess <- x[which.max(y)]
# init_param
init_params <- list(amplitude = 10000000, center = center_guess, sigma = 1, gamma = 1)
# lower_bounds
lower_bounds <- list(amplitude = 0, center = center_guess - 3, sigma = 0, gamma = -0.1)
# upper_bounds
upper_bounds <- list(amplitude = 1e9, center = center_guess + 3, sigma = 5, gamma = 5)
return(list(init_params=init_params, lower_bounds=lower_bounds, upper_bounds=upper_bounds))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.