Nothing
#' Splits representation of graphs and trees.
#'
#' \code{as.splits} produces a list of splits or bipartitions.
#'
#' @aliases splits as.Matrix distinct.splits as.phylo.splits
#' addTrivialSplits removeTrivialSplits matchSplits
#' @param x An object of class phylo or multiPhylo.
#' @param maxp integer, default from \code{options(max.print)}, influences how
#' many entries of large matrices are printed at all.
#' @param zero.print character which should be printed for zeros.
#' @param one.print character which should be printed for ones.
#' @param incomparables only for compatibility so far.
#' @param unrooted todo.
#' @param \dots Further arguments passed to or from other methods.
#' @param recursive logical. If recursive = TRUE, the function recursively
#' descends through lists (and pairlists) combining all their elements into a
#' vector.
#' @param obj1,obj2 an object of class splits.
#' @param k number of taxa.
#' @param labels names of taxa.
#' @return \code{as.splits} returns an object of class splits, which is mainly
#' a list of splits and some attributes. Often a \code{splits} object will
#' contain attributes \code{confidences} for bootstrap or Bayesian support
#' values and \code{weight} storing edge weights.
#' \code{compatible} return a lower triangular matrix where an 1 indicates that
#' two splits are incompatible.
#' @note The internal representation is likely to change.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link[ape]{prop.part}}, \code{\link{lento}},
#' \code{\link{as.networx}}, \code{\link{distanceHadamard}},
#' \code{\link{read.nexus.splits}}
#' @keywords cluster
#' @examples
#'
#' (sp <- as.splits(rtree(5)))
#' write.nexus.splits(sp)
#' spl <- allCircularSplits(5)
#' plot(as.networx(spl))
#'
#' @rdname as.splits
#' @export
as.splits <- function(x, ...) {
if (inherits(x, "splits")) return(x)
UseMethod("as.splits")
}
#' @export
as.Matrix <- function(x, ...) {
if (inherits(x, "Matrix")) return(x)
UseMethod("as.Matrix")
}
#' @rdname as.splits
#' @method as.matrix splits
#' @export
as.matrix.splits <- function(x, zero.print = 0L, one.print = 1L, ...) {
m <- length(x)
labels <- attr(x, "labels")
n <- length(labels)
res <- matrix(zero.print, m, n)
for (i in 1:m) res[i, x[[i]]] <- one.print
dimnames(res) <- list(names(x), labels)
res
}
#' @rdname as.splits
#' @importFrom Matrix sparseMatrix
#' @method as.Matrix splits
#' @export
as.Matrix.splits <- function(x, ...) {
labels <- attr(x, "labels")
l <- length(x)
j <- unlist(x)
i <- rep(1:l, lengths(x))
sparseMatrix(i, j, x = rep(1L, length(i)), dimnames = list(NULL, labels))
# included x und labels
}
#' @rdname as.splits
#' @export
print.splits <- function(x, maxp = getOption("max.print"),
zero.print = ".", one.print = "|", ...) {
x.orig <- x
cx <- as.matrix(x, zero.print = zero.print, one.print = one.print)
print(cx, quote = FALSE, right = TRUE, max = maxp)
invisible(x.orig)
}
#' @export
"[.splits" <- function(x, i) {
tmp <- attributes(x)
result <- unclass(x)[i]
if (!is.null(tmp$weights)) tmp$weights <- tmp$weights[i]
if (!is.null(tmp$confidences)) tmp$confidences <- tmp$confidences[i]
if (!is.null(tmp$intervals)) tmp$intervals <- tmp$intervals[i]
if (!is.null(tmp$data)) tmp$data <- tmp$data[i, , drop = FALSE]
attributes(result) <- tmp
result
}
changeOrder <- function(x, labels) {
oldL <- attr(x, "labels")
if(identical(oldL, labels)) return(x)
ind <- match(oldL, labels)
for (i in seq_along(x))
x[[i]] <- sort(ind[x[[i]]])
if (!is.null(attr(x, "cycle")))
attr(x, "cycle") <- ind[attr(x, "cycle")]
attr(x, "labels") <- labels
x
}
## @rdname as.splits
#' @export
matchSplits <- function(x, y, as.in = TRUE) {
tiplabel <- attr(x, "labels")
if (any(is.na(match(tiplabel, attr(y, "labels")))))
stop("x and y have different labels!")
nTips <- length(tiplabel)
y <- changeOrder(y, tiplabel)
y <- SHORTwise(y) #, nTips)
if (as.in) return(match(SHORTwise(x), y, nomatch = 0L) > 0L)
match(SHORTwise(x), y)
}
countCycles <- function(splits, ord = NULL) {
M <- as.matrix(splits)
if(is.null(ord)){
ord <- attr(splits, "cycle")
if(is.null(ord)) ord <- seq_along(attr(splits, "labels"))
}
res <- countCycle2_cpp(M[, ord])
res
}
#' @rdname as.splits
#' @method c splits
#' @export
c.splits <- function(..., recursive = FALSE) {
x <- list(...)
if (length(x) == 1 && !inherits(x[[1]], "splits")) x <- x[[1]]
n <- length(x)
match.names <- function(a, b) {
if (any(!(a %in% b)))
stop("names do not match previous names")
}
if (n == 1)
return(x[[1]])
labels <- attr(x[[1]], "labels")
cycle <- attr(x[[1]], "cycle")
for (i in 2:n) {
match.names(labels, attr(x[[i]], "labels"))
x[[i]] <- changeOrder(x[[i]], labels)
}
w <- as.vector(unlist(lapply(x, attr, "weights")))
x <- lapply(x, unclass)
res <- structure(do.call("c", x), class = c("splits", "prop.part"))
names(res) <- NULL
attr(res, "labels") <- labels
attr(res, "weights") <- w
attr(res, "cycle") <- cycle
res
}
#' @rdname as.splits
#' @method unique splits
#' @export
unique.splits <- function(x, incomparables = FALSE, unrooted = TRUE, ...) {
nTips <- length(attr(x, "labels"))
x <- SHORTwise(x)
x[!duplicated(x)]
}
#' @export distinct.splits
distinct.splits <- function(...) {
tmp <- c(...)
res <- unique(tmp)
attributes(res) <- attributes(tmp)
attr(res, "weights") <- tabulate(match(tmp, res))
res
}
# computes splits from phylo
#' @rdname as.splits
#' @method as.splits phylo
#' @export
as.splits.phylo <- function(x, ...) {
if (hasArg(as.is))
as.is <- list(...)$as.is
else as.is <- TRUE
result <- bip(x)
if (!is.null(x$edge.length)) {
edge.weights <- numeric(max(x$edge))
edge.weights[x$edge[, 2]] <- x$edge.length
attr(result, "weights") <- edge.weights
}
if (!is.null(x$node.label)) {
conf <- x$node.label
if (is.character(conf)) as.is <- TRUE
#conf <- as.numeric(conf)
if (!as.is) if (max(na.omit(conf)) > (1 + 1e-8)) conf <- conf / 100
attr(result, "confidences") <- c(rep(NA_real_, length(x$tip.label)), conf)
}
attr(result, "labels") <- x$tip.label
class(result) <- c("splits", "prop.part")
result
}
# computes splits from multiPhylo object (e.g. bootstrap, MCMC etc.)
#' @rdname as.splits
#' @method as.splits multiPhylo
#' @export
as.splits.multiPhylo <- function(x, ...) {
if (hasArg(trivial))
trivial <- list(...)$trivial
else trivial <- TRUE
lx <- length(x)
x <- .uncompressTipLabel(x)
x <- unroot(x)
splits <- prop.part(x)
splits <- postprocess.prop.part(splits, method="SHORTwise")
class(splits) <- "list"
weights <- attr(splits, "number")
lab <- attr(splits, "labels")
attr(splits, "labels") <- attr(splits, "number") <- NULL
l <- length(lab)
if(trivial){
splitTips <- vector("list", l)
for (i in 1:l) splitTips[[i]] <- i
result <- c(splitTips, splits)
attr(result, "weights") <- c(rep(lx, l), weights)
}
else attr(result, "weights") <- weights
attr(result, "confidences") <- attr(result, "weights") / lx
attr(result, "summary") <- list(confidences = "ratio", ntrees = lx,
clades = FALSE)
attr(result, "labels") <- lab
class(result) <- c("splits", "prop.part")
result
}
#' @export
as.splits.prop.part <- function(x, ...) {
if (is.null(attr(x, "number")))
attr(x, "weights") <- rep(1, length(x))
else {
attr(x, "weights") <- attr(x, "number")
if( is.integer(attr(x, "number")) )
attr(x, "confidences") <- attr(x, "number") / attr(x, "number")[1]
}
class(x) <- c("splits", "prop.part")
x
}
#' @rdname as.splits
#' @method as.splits networx
#' @export
as.splits.networx <- function(x, ...) {
if (!is.null(x$splits)) x$splits
else warning("No split object included!")
}
#' @rdname as.splits
#' @method as.prop.part splits
#' @export
as.prop.part.splits <- function(x, ...) {
attr(x, "number") <- attr(x, "weights")
attr(x, "weights") <- NULL
attr(x, "confidences") <- NULL
class(x) <- c("prop.part")
x
}
## as.splits.phylo
## @rdname as.splits
## @method as.phylo splits
#' @export
as.phylo.splits <- function(x, check=TRUE, rooted=FALSE, ...){
if(check) x <- compatibleSplits(x)
phy <- splits2phylo(x, rooted=rooted)
spl <- as.splits(phy)[phy$edge[,2]]
ind <- matchSplits(spl, x, FALSE)
phy$edge.length <- attr(x, "weights")[ind]
phy
}
splits2phylo <- function(x, rooted=FALSE){
labels <- attr(x, "labels")
nTips <- length(labels)
if(!rooted) x <- SHORTwise(x)
x <- x[lengths(x) > 1]
x <- x[lengths(x) < nTips]
# unique?
l <- lengths(x)
x <- x[order(l)]
nNodes <- length(x) + 1L
node_i <- as.integer( nNodes + nTips )
edge <- matrix(0L, node_i - 1L, 2L)
y <- seq_len(nTips)
x <- unclass(x)
m <- 0
for(i in seq_along(x)){
tmp <- x[[i]]
kids <- unique( y[ tmp ] )
k <- length(kids)
y[ tmp ] <- node_i
edge[m + 1:k ,1] <- node_i
edge[m + 1:k ,2] <- kids
m <- m + k
node_i <- node_i - 1L
}
kids <- unique( y )
k <- length(kids)
edge[m + 1:k ,1] <- node_i
edge[m + 1:k ,2] <- kids
phy <- structure(list(edge, labels, nNodes),
.Names = c("edge", "tip.label", "Nnode"),
class = "phylo", order = "postorder")
phy
}
compatibleSplits <- function(x) {
x <- postprocess.splits(x)
labels <- attr(x, "labels")
nTips <- length(labels)
x <- SHORTwise(x)
# x <- x[lengths(x)>1]
dm <- as.matrix(compatible(x))
rs <- rowSums(dm)
ind <- which(rs == 0)
if (any(rs > 0)) {
tmp <- which(rs > 0)
candidates <- tmp[order(rs[tmp])]
for (i in candidates) {
if (sum(dm[ind, i]) == 0)
ind <- c(ind, i)
}
}
x[ind]
}
postprocess.splits <- function (x)
{
# w <- attr(x, "number")
tmp <- attributes(x)
labels <- attr(x, "labels")
x <- SHORTwise(x)
drop <- duplicated(x)
if (any(drop)) {
W <- ifelse (is.null(tmp$weights), FALSE, TRUE)
CONF <- ifelse (is.null(tmp$confidences), FALSE, TRUE)
if(W) w <- tmp$weights
if (CONF) conf <- tmp$confidences
class(x) <- NULL
attributes(x) <- NULL
y <- x[drop]
ind1 <- match(y, x)
ind2 <- which(drop)
for (i in seq_along(ind2)) {
if(W) w[ind1[i]] <- w[ind1[i]] + w[ind2[i]]
if(CONF) conf[ind1[i]] <- conf[ind1[i]] + conf[ind2[i]]
}
x <- x[!drop]
w <- w[!drop]
if(CONF) conf <- conf[!drop]
attr(x, "weights") <- w
if(CONF) attr(x, "confidences") <- conf
attr(x, "labels") <- labels
class(x) <- c("splits", "prop.part")
}
x
}
#' @rdname as.splits
#' @method as.bitsplits splits
#' @export
as.bitsplits.splits <- function(x) {
foo <- function(vect, RAWVECT) {
res <- RAWVECT
for (y in vect) {
i <- ceiling(y / 8)
res[i] <- res[i] | as.raw(2^(8 - ((y - 1) %% 8) - 1))
}
res
}
N <- length(x)
n <- length(attr(x, "labels"))
nr <- ceiling(n / 8)
mat <- raw(N * nr)
dim(mat) <- c(nr, N)
RAWVECT <- raw(nr)
for (i in 1:N) mat[, i] <- foo(x[[i]], RAWVECT)
freq <- attr(x, "weights")
if (is.null(freq)) freq <- rep(1, N)
structure(list(matsplit = mat, labels = attr(x, "labels"),
freq = freq), class = "bitsplits")
}
#' @rdname as.splits
#' @method as.splits bitsplits
#' @export
as.splits.bitsplits <- function(x, ...){
as.splits(as.prop.part(x))
}
# computes compatible splits
#' @rdname as.splits
#' @export
compatible <- function(obj1, obj2 = NULL) {
if (!inherits(obj1, "splits"))
stop("obj must be of class splits")
labels <- attr(obj1, "labels")
l <- length(labels)
n <- length(obj1)
bp1 <- as.matrix(obj1)
bp1[bp1[, 1] == 0L, ] <- 1L - bp1[bp1[, 1] == 0L, ]
if (!is.null(obj2)) {
m <- length(obj2)
bp2 <- as.matrix(obj2)
labels2 <- attr(obj2, "labels")
bp2 <- bp2[, match(labels2, labels), drop = FALSE]
bp2[bp2[, 1] == 0L, ] <- 1L - bp2[bp2[, 1] == 0L, ]
}
else bp2 <- bp1
if (is.null(obj2)) res <- matrix(0L, n, n)
else res <- matrix(0L, n, m)
tmp1 <- tcrossprod(bp1, bp2)
tmp2 <- tcrossprod(1L - bp1, 1L - bp2)
tmp3 <- tcrossprod(bp1, 1L - bp2)
tmp4 <- tcrossprod(1L - bp1, bp2)
res[(tmp1 * tmp2 * tmp3 * tmp4) > 0] <- 1L
if (is.null(obj2)) {
res <- res[lower.tri(res)]
attr(res, "Size") <- n
attr(res, "Diag") <- FALSE
attr(res, "Upper") <- FALSE
class(res) <- "dist"
}
return(res)
}
# in clanistic.R ??
compatible3 <- function(x, y = NULL) {
if (!inherits(x, "splits"))
stop("x must be of class splits")
if (is.null(y)) y <- x
if (!inherits(y, "splits"))
stop("y must be of class splits")
xlabels <- attr(x, "labels")
ylabels <- attr(y, "labels")
if (identical(xlabels, ylabels)) labels <- xlabels
else labels <- intersect(xlabels, ylabels)
nx <- length(x)
ny <- length(y)
bp1 <- as.matrix(x)[, labels, drop = FALSE]
bp2 <- as.matrix(y)[, labels, drop = FALSE]
rs1 <- rowSums(bp1)
rs2 <- rowSums(bp2)
res <- matrix(0L, nx, ny)
tmp1 <- tcrossprod(bp1, bp2)
res <- matrix(0L, nx, ny)
for (i in 1:nx) {
for (j in 1:ny) {
if (tmp1[i, j] == rs1[i]) res[i, j] <- 1
if (tmp1[i, j] == rs2[j]) res[i, j] <- 2
if (tmp1[i, j] == rs1[i] & tmp1[i, j] == rs2[j]) res[i, j] <- 3
}
}
if (is.null(y)) {
res <- res[lower.tri(res)]
attr(res, "Size") <- length(x)
attr(res, "Diag") <- FALSE
attr(res, "Upper") <- FALSE
class(res) <- "dist"
}
return(res)
}
compatible_2 <- function(obj1, obj2) {
ntaxa <- length(obj1$labels)
m1 <- obj1$matsplit
m2 <- obj2$matsplit
n1 <- ncol(m1)
n2 <- ncol(m2)
res <- rep(TRUE, n1)
for (i in 1:n1) {
j <- 1
while (j <= n2) {
if (!ape::arecompatible(m1[, i], m2[, j], ntaxa)) {
res[i] <- FALSE
break()
}
j <- j + 1L
}
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.