R/fitRMU_MHmcmc_p.R

Defines functions fitRMU_MHmcmc_p

Documented in fitRMU_MHmcmc_p

#' fitRMU_MHmcmc_p generates set of parameters to be used with fitRMU_MHmcmc()
#' @title Generates set of parameters to be used with fitRMU_MHmcmc()
#' @author Marc Girondot
#' @return A matrix with the parameters
#' @param result An object obtained after a fitRMU() fit
#' @param density Preset of density; can be dnorm, dunif, or dgamma
#' @param accept If TRUE, does not wait for user interaction
#' @family Fill gaps in RMU
#' @description Interactive or automatic script used to generate set of parameters to be 
#' used with fitRMU_MHmcmc().\cr
#' If density="dgamma" is used, a uniform distribution is used for r, as 
#' r can be negative.
#' @examples 
#' \dontrun{
#' library("phenology")
#' RMU.name.AtlanticW <- data.frame(mean=c("Yalimapo.French.Guiana", 
#'                                          "Galibi.Suriname", 
#'                                          "Irakumpapy.French.Guiana"), 
#'                                  se=c("se_Yalimapo.French.Guiana", 
#'                                       "se_Galibi.Suriname", 
#'                                       "se_Irakumpapy.French.Guiana"))
#' data.AtlanticW <- data.frame(Year=c(1990:2000), 
#'       Yalimapo.French.Guiana=c(2076, 2765, 2890, 2678, NA, 
#'                                6542, 5678, 1243, NA, 1566, 1566),
#'       se_Yalimapo.French.Guiana=c(123.2, 27.7, 62.5, 126, NA, 
#'                                  230, 129, 167, NA, 145, 20),
#'       Galibi.Suriname=c(276, 275, 290, NA, 267, 
#'                        542, 678, NA, 243, 156, 123),
#'       se_Galibi.Suriname=c(22.3, 34.2, 23.2, NA, 23.2, 
#'                            4.3, 2.3, NA, 10.3, 10.1, 8.9),
#'       Irakumpapy.French.Guiana=c(1076, 1765, 1390, 1678, NA, 
#'                                3542, 2678, 243, NA, 566, 566),
#'       se_Irakumpapy.French.Guiana=c(23.2, 29.7, 22.5, 226, NA, 
#'                                  130, 29, 67, NA, 15, 20))
#'                            
#' cst <- fitRMU(data=data.AtlanticW, RMU.name=RMU.name.AtlanticW, 
#'                colname.year="Year", model.trend="Constant", 
#'                model.SD="Zero")
#' pMCMC <- fitRMU_MHmcmc_p(result=cst, accept=TRUE)
#' }
#' @export

fitRMU_MHmcmc_p <- function(result=stop("An output from fitRMU() must be provided"), 
                            density="dunif", accept=FALSE) {
  
  if (!inherits(result, "fitRMU")) {
    stop("An output from fitRMU() must be provided")
  }
  
  
  # rownames(parametersMCMC)<-names(par)
  if (length(density) != length(result$par)) {
    density <- rep(density, length(result$par))[seq_along(result$par)]
  }
  
  parametersMCMC <- data.frame(Density=character(), Prior1=numeric(), Prior2=numeric(), 
                               SDProp=numeric(), Min=numeric(), Max=numeric(), Init=numeric(), stringsAsFactors = FALSE)
  
  for (indice.par in seq_along(result$par)) {
    par <- result$par[indice.par]
    nm <- names(par)
    par <- unname(par)
    SE <- unname(abs(result$SE[indice.par]))
    # 9/4/2022
    SE <- ifelse(is.na(SE), abs(par/10), SE)
    # if (is.na(SE)) SE <- abs(par/10)
    
    if (nm=="r") {
      if (density[indice.par] == "dnorm") {
        parametersMCMC_ec <- data.frame(Density="dnorm", Prior1=par, Prior2=SE, 
                                        SDProp=2, Min=min(-1, par-1), 
                                        Max=max(1, par+1), Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      } else {
        if (density[indice.par] == "dgamma") {
          warning("Gamma distribution is replaced by uniform distribution for r.")
        }
        parametersMCMC_ec <- data.frame(Density="dunif", Prior1=-2, Prior2=+2, 
                                        SDProp=2, Min=min(-2, par-2), 
                                        Max=max(2, par+2), Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      }
    }
    if (substr(nm, 1, 2)=="T_") {
      if (density[indice.par] == "dnorm") {
        parametersMCMC_ec <- data.frame(Density="dnorm", 
                                        Prior1=par, Prior2=SE, 
                                        SDProp=par, 
                                        Min=0, 
                                        Max=par*2, 
                                        Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      } else {
        if (density[indice.par] == "dgamma") {
          # Prior1 est shape=a
          # Prior2 est rate=1/s
          # Moyenne=a*s
          # Var=a*s^2
          
          # a=Moyenne/s=Moyenne*r
          # Var=Moyenne/s*s^2
          # Var=Moyenne*s
          # s=Var/Moyenne
          # r=Moyenne/Var
          # a=Moyenne*r
          
          r <- par/(SE^2)
          a <- par*r
          parametersMCMC_ec <- data.frame(Density="dgamma", 
                                          Prior1=a, Prior2=r, 
                                          SDProp=par, 
                                          Min=0, 
                                          Max=par * 2, 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
        } else {
          parametersMCMC_ec <- data.frame(Density="dunif", 
                                          Prior1=0, Prior2=par*2, 
                                          SDProp=par, 
                                          Min=0, 
                                          Max=par*2, 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
          
        }
      }
    }
    
    if (substr(nm, 1, 3)=="SD_") {
      if (density[indice.par] == "dnorm") {
        parametersMCMC_ec <- data.frame(Density="dnorm", Prior1=par, Prior2=SE, 
                                        SDProp=2, Min=0.01, Max=max(20, par+20), Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      } else {
        if (density[indice.par] == "dgamma") {
          # Prior1 est shape=a
          # Prior2 est rate=1/s
          # Moyenne=a*s
          # Var=a*s^2
          
          # a=Moyenne/s=Moyenne*r
          # Var=Moyenne/s*s^2
          # Var=Moyenne*s
          # s=Var/Moyenne
          # r=Moyenne/Var
          # a=Moyenne*r
          
          r <- par/(SE^2)
          a <- par*r
          parametersMCMC_ec <- data.frame(Density="dgamma", 
                                          Prior1=a, Prior2=r, 
                                          SDProp=par, 
                                          Min=0, 
                                          Max=par * 2, 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
        } else {
          parametersMCMC_ec <- data.frame(Density="dunif", Prior1=1E-5, Prior2=par+20, 
                                          SDProp=2, Min=1E-5, Max=max(20, par+20), 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
          
        }
        
      }
    }
    if (substr(nm, 1, 4)=="aSD_") {
      if (density[indice.par] == "dnorm") {
        parametersMCMC_ec <- data.frame(Density="dnorm", 
                                        Prior1=par, Prior2=SE, 
                                        SDProp=2, Min=1E-5, Max=max(20, par+20), 
                                        Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      } else {
        
        if (density[indice.par] == "dgamma") {
          # Prior1 est shape=a
          # Prior2 est rate=1/s
          # Moyenne=a*s
          # Var=a*s^2
          
          # a=Moyenne/s=Moyenne*r
          # Var=Moyenne/s*s^2
          # Var=Moyenne*s
          # s=Var/Moyenne
          # r=Moyenne/Var
          # a=Moyenne*r
          
          r <- par/(SE^2)
          a <- par*r
          parametersMCMC_ec <- data.frame(Density="dgamma", 
                                          Prior1=a, Prior2=r, 
                                          SDProp=par, 
                                          Min=0, 
                                          Max=par * 2, 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
        } else {
          parametersMCMC_ec <- data.frame(Density="dunif", 
                                          Prior1=1E-5, Prior2=max(20, par+20), 
                                          SDProp=2, Min=1E-5, Max=max(20, par+20), 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
        }
        
      }
    }
    if (substr(nm, 1, 1)=="a" & substr(nm, 3, 3)=="_") {
      if (density[indice.par] == "dnorm") {
        parametersMCMC_ec <- data.frame(Density="dnorm", 
                                        Prior1=par, Prior2=SE, 
                                        SDProp=2, Min=0, 
                                        Max=max(20, par*2), Init=par, 
                                        row.names = nm, stringsAsFactors = FALSE)
      } else {
        
        if (density[indice.par] == "dgamma") {
          # Prior1 est shape=a
          # Prior2 est rate=1/s
          # Moyenne=a*s
          # Var=a*s^2
          
          # a=Moyenne/s=Moyenne*r
          # Var=Moyenne/s*s^2
          # Var=Moyenne*s
          # s=Var/Moyenne
          # r=Moyenne/Var
          # a=Moyenne*r
          
          r <- par/(SE^2)
          a <- par*r
          parametersMCMC_ec <- data.frame(Density="dgamma", 
                                          Prior1=a, Prior2=r, 
                                          SDProp=par, 
                                          Min=0, 
                                          Max=par * 2, 
                                          Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
        } else {
          parametersMCMC_ec <- data.frame(Density="dunif", 
                                          Prior1=par/2, 
                                          Prior2=par*2, 
                                          SDProp=2, Min=par/2, 
                                          Max=par*2, Init=par, 
                                          row.names = nm, stringsAsFactors = FALSE)
          
        }
        
        
      }
    }
    parametersMCMC <- rbind(parametersMCMC, parametersMCMC_ec)
  }
  
  parameters <- parametersMCMC
  
  if (accept) {
    return(parameters)
  } else {
    
    repeat {
      
      cat("Proposition:\n")
      print(parameters)
      cat("Name of the parameter to change or Enter to quit:\n")
      f<-scan(nmax=1, quiet=TRUE, what=character())
      
      if (length(f)==0) f <- "q"
      
      if (f=="q") {
        return(parameters)
        
      } else {
        
        variable <- which(f==names(par))
        if (length(variable)==0) {
          cat("The parameter does not exist:\n")
        } else {
          print(variable)
          cat(paste("Change for the parameter ",names(par)[variable],":\n",sep=""))
          
          cat(paste("Distribution of the prior (Enter for default ",parameters[variable, "Density"], "):", sep=""))
          density<-scan(nmax=1, quiet=TRUE, what=character())
          if (length(density)!=0) { parameters[variable, "Density"] <- density } else { density <- parameters[variable, "Density"] }
          
          if (density == "dunif") {
            
            cat(paste("Distribution of the prior, Minimum (Enter for default ",parameters[variable, "Prior1"], "):", sep=""))
            f<-scan(nmax=1, quiet=TRUE, what=character())
            if (length(f)!=0) parameters[variable, "Prior1"] <- f
            cat(paste("Distribution of the prior, Maximum (Enter for default ",parameters[variable, "Prior2"], "):", sep=""))
            f<-scan(nmax=1, quiet=TRUE, what=character())
            if (length(f)!=0) parameters[variable, "Prior2"] <- f
            
          } else {
            
            if (density == "dnorm") {
              
              cat(paste("Distribution of the prior, Mean (Enter for default ",parameters[variable, "Prior1"], "):", sep=""))
              f<-scan(nmax=1, quiet=TRUE, what=character())
              if (length(f)!=0) parameters[variable, "Prior1"] <- f
              cat(paste("Distribution of the prior, Standard deviation (Enter for default ",parameters[variable, "Prior2"], "):", sep=""))
              f<-scan(nmax=1, quiet=TRUE, what=character())
              if (length(f)!=0) parameters[variable, "Prior2"] <- f
              
            } else {
              
              cat(paste("Distribution of the prior, value 1 (Enter for default ",parameters[variable, "Prior1"], "):", sep=""))
              f<-scan(nmax=1, quiet=TRUE, what=character())
              if (length(f)!=0) parameters[variable, "Prior1"] <- f
              cat(paste("Distribution of the prior, value 2 (Enter for default ",parameters[variable, "Prior2"], "):", sep=""))
              f<-scan(nmax=1, quiet=TRUE, what=character())
              if (length(f)!=0) parameters[variable, "Prior2"] <- f
              
            }
          }
          
          
          cat(paste("SD of new proposition (Enter for default ",parameters[variable, "SDProp"], "):", sep=""))
          f<-scan(nmax=1, quiet=TRUE, what=character())
          if (length(f)!=0) parameters[variable, "SDProp"] <- f
          cat(paste("Minimum for the parameter (default ",parameters[variable, "Min"], "):", sep=""))
          f<-scan(nmax=1, quiet=TRUE, what=character())
          if (length(f)!=0) parameters[variable, "Min"] <- f
          cat(paste("Maximum for the parameter (Enter for default ",parameters[variable, "Max"], "):", sep=""))
          f<-scan(nmax=1, quiet=TRUE, what=character())
          if (length(f)!=0) parameters[variable, "Max"] <- f
          cat(paste("Initial value (Enter for default ",parameters[variable, "Init"], "):", sep=""))
          f<-scan(nmax=1, quiet=TRUE, what=character())
          if (length(f)!=0) parameters[variable, "Init"] <- f
        }
        
      }
      
    }
    
  }
  
  for (i in 1:nrow(parameters)) {
    if (parameters[i, "Density"]=="dunif") {
      mn <- max(as.numeric(parameters[i, "Prior1"]), as.numeric(parameters[i, "Min"]))    
    } else {
      mn <- as.numeric(parameters[i, "Min"])
      mx <- as.numeric(parameters[i, "Max"])
    }  
    if (findInterval(as.numeric(parameters[i, "Init"]), c(mn, mx)) != 1) {
      parameters[i, "Init"] <- as.character(mn+(mx-mn)/2)
      warning(paste("Initial value for parameter ", rownames(parameters)[i], " was out of range; It is corrected. Check it.")) 
    }
  }
  
  
}

Try the phenology package in your browser

Any scripts or data that you put into this service are public.

phenology documentation built on Sept. 11, 2024, 6:07 p.m.