R/par_init.R

Defines functions par_init

Documented in par_init

#' par_init calculates initial set of parameters.
#' @title Calculate initial set of parameters.
#' @author Marc Girondot
#' @return The initial set of parameters
#' @param data Dataset generated with add_phenology()
#' @param fixed.parameters Set of fixed parameters
#' @param add.cofactors Names of cofactors that will be used (see fit_phenology)
#' @description This function is used to generate an initial set of parameters for fitting 
#' that is expected to be not to far from the final.\cr
#' The parameters can be:\cr
#' \itemize{
#'   \item \code{Min}, \code{MinE}, \code{MinB}, \code{PMin}, \code{PMinB}, \code{PMinE};
#'   \item \code{Max};
#'   \item \code{Begin}, \code{Peak}, \code{Flat}, \code{End};
#'   \item \code{Length}, \code{LengthB}, \code{LengthE};
#'   \item \code{Theta};
#'   \item \code{Alpha}, \code{Beta}, \code{Tau}, \code{Phi}, \code{Delta};
#'   \item \code{Alpha1}, \code{Beta1}, \code{Tau1}, \code{Phi1}, \code{Delta1};
#'   \item \code{Alpha2}, \code{Beta2}, \code{Tau2}, \code{Phi2}, \code{Delta2};
#'   \item \code{Alpha3}, \code{Beta3}, \code{Tau3}, \code{Phi3}, \code{Delta3};
#' }
#' And the name of level if a cofactor is used.\cr
#' The parameters \code{Max}, \code{Min}, \code{MinE}, \code{MinB}, \code{Length}, 
#' \code{LengthB}, \code{LengthE}, and \code{Peak} can be followed with _ and part of the 
#' name of the rookery.\cr
#' The model for scale effect of sinusoid is: Alpha + Beta * n(t) ^ Tau where 
#' n(t) is the expected number for the day t without the sinusoid effect.
#' @family Phenology model
#' @examples
#' \dontrun{
#' library(phenology)
#' # Read a file with data
#' data(Gratiot)
#' # Generate a formatted list nammed data_Gratiot 
#' data_Gratiot <- add_phenology(Gratiot, name="Complete", 
#' 		reference=as.Date("2001-01-01"), format="%d/%m/%Y")
#' # Generate initial points for the optimisation
#' parg <- par_init(data_Gratiot, fixed.parameters=NULL)
#' # Run the optimisation
#' result_Gratiot <- fit_phenology(data=data_Gratiot, 
#' 		fitted.parameters=parg, fixed.parameters=NULL)
#' data(result_Gratiot)
#' # Plot the phenology and get some stats
#' output<-plot(result_Gratiot)
#' 
#' ## When a series has only 0, it should be used in two steps
#' ## Let see an example
#' 
#' # Let create a times series with only 0
#' data0 <- data.frame(Date=c("11/3/2015", "12/3/2015", "13/3/2015-18/3/2015", "25/3/2015"), 
#'                     Number=c(0, 0, 0, 0), 
#'                     Beach=rep("Site0", 4), stringsAsFactors=FALSE)
#' data1 <- data.frame(Date=c("15/3/2015", "16/3/2015", "20/3/2015-22/3/2015", "25/3/2015"), 
#'                     Number=c(1, 0, 3, 0), 
#'                     Beach=rep("Site1", 4), stringsAsFactors=FALSE)
#' data <- rbind(data0, data1)
#' 
#' # Here I include timeseries with no observation
#' try1 <- add_phenology(data, format="%d/%m/%Y", month_ref=1, include0=TRUE)
#' pfixed <- c(Min=0, Flat=0)
#' parg <- par_init(try1, fixed.parameters=pfixed)
#' # The Max value for the series without observations should not be fitted. The ML is for Max being 0
#' pfixed <- c(pfixed, parg[(substr(names(parg), 1, 4)=="Max_") & (parg == 0)])
#' parg <- parg[!(names(parg) %in% names(pfixed))]
#' 
#' }
#' @export


par_init <- function(data=stop("A dataset must be provided"), 
           fixed.parameters=NULL, add.cofactors=NULL) {
    
    # data=NULL; fixed.parameters=NULL; add.cofactors=NULL
    
    fixed.parameters.ini <- fixed.parameters
    if (is.null(fixed.parameters)) {fixed.parameters <- NA}
    
    if (!inherits(data, "phenologydata")) {
      stop("Data must be formated first using the function add_phenology().")
    }
    
    
    par <- NULL
    
    bg <- NULL
    pk <- NULL
    ed <- NULL
    
    for(serie in 1:length(data)) {
      
      od <- data[[serie]]$ordinal
      od2 <- data[[serie]]$ordinal2
      nb <- as.numeric(data[[serie]]$nombre)
      nb <- ifelse(!is.na(od2), nb/(od2-od+1), nb)
      
      mx1 <- max(nb, na.rm=TRUE)/2
      names(mx1)<-paste("Max_", names(data[serie]), sep="")
      
      if (is.na(fixed.parameters["Min"]) & is.na(fixed.parameters["PMin"])) {
        
        mB1<-0.1
        names(mB1)<-paste("MinB_", names(data[serie]), sep="")
        
        mE1<-0.1
        names(mE1)<-paste("MinE_", names(data[serie]), sep="")
        
      }
      
      if (!is.na(fixed.parameters["Peak"])) {
        pkp <- fixed.parameters["Peak"]
      } else {
        pkp <- od[which.max(nb)]
        if (!is.na(od2[which.max(nb)])) {
          pkp <- pkp + floor((od2[which.max(nb)] - pkp + 1)/2)
        }
        
        pkp <- rnorm(1, pkp, 5)
        names(pkp) <- "Peak"
      }
      
      if (!is.na(fixed.parameters["Begin"])) {
        bgp <- fixed.parameters["Begin"]
      } else {
        bgp <- od[1]+(pkp-od[1])/2
        names(bgp) <- "Begin"
      }
      
      if (!is.na(fixed.parameters["End"])) {
        edp <- fixed.parameters["End"]
      } else {
        edp <- od[length(od)]-(od[length(od)]-pkp)/2
        names(edp) <- "End"
      }
      
      if ((pkp<=bgp) || (pkp>=edp)) {
        pkp <- bgp+(edp-bgp)/2	
        names(pkp) <- "Peak"
      }
      
      bg <- c(bg, bgp)
      ed <- c(ed, edp)
      pk <- c(pk, pkp)
      
      #c(bg, pk, ed, Flat=2, mx1, mB1, mE1)
      
      c <- paste("Max_", names(data[serie]), sep="")
      if (is.na(fixed.parameters[c])) {par <- c(par, mx1)}
      if (is.na(fixed.parameters["Min"]) & is.na(fixed.parameters["PMin"])) {
        c <- paste("MinB_", names(data[serie]), sep="")
        if ((is.na(fixed.parameters["MinB"]))*(is.na(fixed.parameters[c]))) {par <- c(par, mB1)}
        c <- paste("MinE_", names(data[serie]), sep="")
        if ((is.na(fixed.parameters["MinE"]))*(is.na(fixed.parameters[c]))) {par <- c(par, mE1)}
      }
      
      # fin de la boucle des séries
      
    }
    
    if ((is.na(fixed.parameters["Begin"])) && (is.na(fixed.parameters["Length"])) && (is.na(fixed.parameters["LengthB"]))) {
      par <- c(par, Begin = (min(bg) + mean(bg))/2)
    }
    if ((is.na(fixed.parameters["Peak"]))) {
      par <- c(par, Peak = mean(pk))
    }
    if ((is.na(fixed.parameters["End"])) && (is.na(fixed.parameters["Length"])) && (is.na(fixed.parameters["LengthE"]))) {
      par <- c(par, End = (max(ed)+mean(ed))/2)
    }
    if (is.na(fixed.parameters["Flat"])) {
      par <- c(par, Flat=2)
    }
    
    if (is.na(fixed.parameters["Theta"])) {
      par <- c(par, Theta=5)
    }
    
    
    par2 <- BE_to_LBLE(c(par, fixed.parameters.ini))
    par <- par2[!(names(par2) %in% names(fixed.parameters.ini))]
    
    # 19/3/2016
    cof <- rep(0, length(add.cofactors))
    names(cof) <- add.cofactors
    
    cof <- cof[!(names(cof) %in% names(fixed.parameters.ini))]
    
    return(c(par, cof))
  }

Try the phenology package in your browser

Any scripts or data that you put into this service are public.

phenology documentation built on Sept. 11, 2024, 6:07 p.m.