R/Kmatrix.R

Defines functions Kmatrix

Documented in Kmatrix

Kmatrix <- function(model, modelterm, covariate=NULL, covariateV=NULL, data=NULL, prtnum=FALSE)
{
  if (inherits(model, "mer") || inherits(model, "merMod")) { 
    if(!lme4::isLMM(model) && !lme4::isGLMM(model))
      stop("Can't handle a nonlinear mixed model")
    thecall <- slot(model, "call")
    contrasts <- attr(model.matrix(model), "contrasts")
  }else if (inherits(model, "lme")) {
    thecall <- model$call
    contrasts <- model$contrasts
  }else if (inherits(model, "gls")) {
    thecall <- model$call
    contrasts <- model$contrasts
  }else if (inherits(model, "lm")) {  
    thecall <- model$call
    contrasts <- attr(model.matrix(model), "contrasts")
  }else if (inherits(model, "glmmTMB")) {  
    thecall <- model$call
    contrasts <- attr(model.matrix(model), "contrasts")
  }else stop(paste("Can't handle an model of class", class(model)[1]))
  
  cov.reduce <- function(x, name) mean(x, na.rm=TRUE)  
  fac.reduce <- function(coefs, lev) apply(coefs, 2, mean, na.rm=TRUE) 
  
  # Get model formula and index of response
  Terms <- terms(model)
  if (!is.null(attr(Terms, "offset"))) {
  offset_term <- deparse(attr(Terms, "variables")[attr(Terms, "offset")+1])
offset_n <- unlist(strsplit(trimws(gsub("[\\(\\)]"," ", offset_term)), " "))
offset_n <- offset_n[length(offset_n)]
  }
  yname <- as.character(attr(Terms, "variables"))[[2]]

  Terms <- delete.response(Terms)
  
  # get the pure formula w/o extra stuff
  formrhs <- formula(Terms)
 # if (random_term && inherits(model, "merMod")) formrhs <- formula(model)[-2]
  # All the variables in the model
  nm <- all.vars(formrhs)
  
  nm <- nm[nm!="pi"]  
  # Figure out if any are coerced to factor or ordered
  anm <- all.names(formrhs)    
  coerced <- anm[1 + grep("factor|as.factor|ordered|as.ordered", anm)]
  
  # Obtain a simplified formula -- needed to recover the data in the model
  form <- as.formula(paste("~", paste(nm, collapse = "+")))
  envir <- attr(Terms, ".Environment")
  #eval(thecall$data, envir=envir)
  
  if (inherits(model, "mer") || inherits(model, "merMod") || inherits(model, "lme") || inherits(model, "gls")) {
	model_data <- get_all_vars(formula(terms(model)), getData(model)) 
    model_data <- droplevels(na.omit(model_data))
    model_data <- get_all_vars(formrhs, model_data)
    }else{
      if(!is.null(data)) {
	        if (grepl("[,]", yname)) {
      yname <- unlist(strsplit(yname, "[,] "))[2]
      yname <- gsub("\\)", "", unlist(strsplit(yname, " - "))) # ynames
    }
	  model_data <- as.data.frame(data[, c(yname, nm)]) 
	  }else model_data <- model.frame(model)
	}

	if (is.null(covariate) || !setequal(covariate, modelterm)) {
  vars <- unlist(strsplit(modelterm, "\\:"))
  if(any(!is.element(vars, names(model_data)[sapply(model_data, is.factor)])))
    stop(paste(vars, "must be factor(s) or not in the fixed effects!"))
	}
	
  X <- model.frame(form, model_data, 
                   subset = eval(thecall$subset, enclos=envir),
                   na.action = na.omit, drop.unused.levels = TRUE)			  
  preddf <- X
  baselevs <- xlev <- matdat <- list()  
  all.var.names <- names(X)
  
  for (xname in all.var.names) {
    obj <- X[[xname]]
    if (is.factor(obj)) {            
      xlev[[xname]] <- levels(obj)
      baselevs[[xname]] <- levels(obj)
    }else if (is.matrix(obj)) {
      # Matrices -- reduce columns thereof, but don't add to baselevs
      matdat[[xname]] <- apply(obj, 2, cov.reduce, xname)
    }else {
      # single numeric pred but coerced to a factor - use unique values
      if (length(grep(xname, coerced)) > 0) {
	    baselevs[[xname]] <- sort(unique(obj))
      # Ordinary covariates - summarize if not in 'at' arg
      }else baselevs[[xname]] <- cov.reduce(obj, xname)       
    }
  }
  
  factor_names <- c(names(xlev), coerced)
  covlevname <- setdiff(names(baselevs), factor_names)
  if (!is.null(attr(Terms, "offset"))) covlevname <- covlevname[covlevname!=offset_n]
  
  if (length(factor_names)!=0) {
  n.table <- table(preddf[, factor_names, drop = FALSE])
  ndf <- data.frame(n.table)
  }else ndf <- NULL
  
  if ((!is.null(covariate) && !unique(covariate%in%c("NULL", ""))) && all(is.numeric(covariate))) baselevs[covlevname] <- as.list(covariate)
  if ((!is.null(covariate) && !unique(covariate%in%c("NULL", ""))) && is.character(covariate) && all(covariate%in%covlevname))  {
   if (length(covariate)==1){
    # if (as.is) {
      # baselevs[[covariate]] <- sort(unique(X[[covariate]]))
    # }else{ 
      if ((!is.null(covariateV) && !unique(covariateV%in%c("NULL", ""))) && is.vector(covariateV)){
        baselevs[[covariate]] <- covariateV
      }else baselevs[[covariate]] <- sort(unique(c(seq(min(X[[covariate]]), max(X[[covariate]]),length=50), X[[covariate]])))
   # }
   }else{
   if ((!is.null(covariateV) && !unique(covariateV%in%c("NULL", ""))) && is.list(covariateV)){
        for (i in seq_along(covariate)) baselevs[[covariate[i]]] <- sort(unique(covariateV[[i]]))
      }else{
	    for (i in covariate) baselevs[[i]] <- sort(unique(c(seq(min(X[[i]]), max(X[[i]]),length=30))))  
   }
   }
  }
  if (all(length(covlevname)!=0, prtnum)) {
    cat("\n", "The predicted means are estimated at \n\n")
    print(round( unlist(baselevs[covlevname]), 4))
    cat("\n")
  }
  
  # OK. Now make a grid of the factor levels of interest, along w/ covariate "at" values
  grid <- do.call("expand.grid", baselevs)
  
  # add any matrices
  for (nm in names(matdat)) grid[[nm]] <- matrix(rep(matdat[[nm]], each=nrow(grid)), nrow=nrow(grid))
  
  # Now make a new dataset with just the factor combs and covariate values we want for prediction
  # WARNING -- This will overwrite X, so get anything you need from X BEFORE we get here
  if (!is.null(ndf)) ndf <- merge( grid, ndf, sort=FALSE)
  
  m <- model.frame(Terms, grid, na.action = na.pass, xlev = xlev)
  X <- model.matrix(Terms, m, contrasts.arg = contrasts)
  
  # if (!is.null(ndf) && any(ndf$Freq==0)) {
    # warning("Missing treatments' combination appeared, predicted means maybe misleading!")
    # X[ndf$Freq==0, ] <- NA
  # }
  
  max_ord <- max(attr(Terms,"order"))
  if (!setequal(covariate, modelterm) && max_ord > 1 && length(factor_names) > 1  && any(ndf$Freq==0) && !(setequal(unique(ndf$Freq), c(0, 1)))) { #  && any(ndf$Freq==0)
    
    warning("Missing treatments' combination appeared, predicted means maybe misleading!")
    X[ndf$Freq==0, ] <- NA
   # X <- X[ndf$Freq!=0, ]
  }
   
  
  
  # All factors (excluding covariates)
  allFacs <- all.var.names
  
  ### Array of indexes for rows of X, organized by dimensions
  row.indexes <- array(seq_len(nrow(X)), sapply(baselevs, length))  
  
  # convert a string to a formula
  form <- as.formula(paste("~", paste(modelterm, collapse = "+")))
  
  # These are the variables involved; and the label to use in the results
  facs <- all.vars(form)
  if ((!is.null(covariate) && !unique(covariate%in%c("NULL", ""))) && all(is.character(covariate), all(!covariate%in%facs))) facs <- c(facs, covariate)   
  
  if (any(sapply(facs, function(nm) length(grep(nm, allFacs)) == 0)))
    stop(paste("Unknown factor(s) in specification:", paste(form, collapse=" ")))
  
  # create the grid of factor combinations
  levs <- list()
  for (f in facs) levs[[f]] <- baselevs[[f]]
  
  combs <- do.call("expand.grid", levs)
  
  fctnames <- do.call("expand.grid", levs[rev(names(levs))])
  fctnames <- fctnames[, rev(names(fctnames)), drop=FALSE]
  rnK <- do.call("paste", c(fctnames, sep=":")) 
  
  K <- plyr::alply(row.indexes, match(facs, names(baselevs)), function(idx) {
    fac.reduce(X[idx, , drop=FALSE], "")
  })
  K <- as.matrix(as.data.frame(K))
  dimnames(K)[[2]] <- do.call("paste", c(combs, sep=":"))      
  K <-t(K)
  K <- K[rnK, , drop=FALSE]
  if (length(setdiff(colnames(model.matrix(model)), colnames(K)))!=0) stop(paste("You may need drop empty levels in factor", modelterm))
  K <- K[, colnames(model.matrix(model)), drop=FALSE]
  fctnames <- cbind(fctnames, K[, setdiff(covlevname, names(fctnames)), drop=FALSE])
  
  return(list(K=K, fctnames=fctnames, response=yname, preddf=preddf))
}

Try the predictmeans package in your browser

Any scripts or data that you put into this service are public.

predictmeans documentation built on May 29, 2024, 9:49 a.m.