Nothing
#added SRMR and RMSEA 1/11/25
"cortest" <-
function(R1,R2=NULL, n1=NULL,n2=NULL,fisher=TRUE,cor=TRUE, method = "pearson",use="pairwise") {
cl <- match.call()
if ((NROW(R1)!= NCOL(R1)) & cor) {n1 <- NROW(R1)
# message("R1 was not square, finding R from data")
R1 <- cor(R1,use=use,method=method)}
if(!is.matrix(R1) ) R1 <- as.matrix(R1) #converts data.frames to matrices if needed
p <- NCOL(R1)
if(is.null(n1)) {n1 <- 100
warning("n not specified, 100 used") }
if(is.null(R2)) { if(fisher) {R <- 0.5*log((1+R1)/(1-R1))
R2 <- R*R} else {R2 <- R1*R1}
if(cor) {diag(R2) <- 0
E <- (sum(R2*lower.tri(R2)))
z <- sum(R2*lower.tri(R2))
df <- p*(p-1)/2
} else {
E <- sum(R2)
z <- sum(R1^2)
df <- ncol(R1) * nrow(R1)}
chisq <- E *(n1-3)
n <- n1
z <- z/df
p.val <- pchisq(chisq,df,lower.tail=FALSE)
} else { #end of 1 matrix test
if ((dim(R2)[1] != dim(R2)[2]) & cor) {n2 <- dim(R2)[1]
message("R2 was not square, finding R from data")
R2 <- cor(R2,use=use, method=method)}
if(!is.matrix(R2) ) R2 <- as.matrix(R2)
if(fisher) {
R1 <- 0.5*log((1+R1)/(1-R1))
R2 <- 0.5*log((1+R2)/(1-R2))
if(cor) {diag(R1) <- 0
diag(R2) <- 0} }
R <- R1 - R2 #direct difference
R2 <- R*R
if(is.null(n2)) n2 <- n1
n <- 2*(n1*n2)/(n1+n2) # harmonic sample size
if(cor) { E <- (sum(R2*lower.tri(R2))) #just count the lower diagonal elements
chisq <- E *(n-3)
df <- p*(p-1)/2
z <- sum(R2*lower.tri(R2)) / df} else {E <- sum(R2)
chisq <- E * (n-3)
df <- ncol(R2) * nrow(R2)
z <- sum(R2) / df
}
p.val <- pchisq(chisq,df,lower.tail=FALSE)
}
# if (is.null(n2) ) z <- NULL
SRMR <- sqrt(z)
RMSEA <- sqrt(max(chisq/(df* n) - 1/(n-1), 0)) #this is x2/(df*N ) - 1/(N-1) #fixed 4/5/19
result <- list(chi2=chisq,prob=p.val,df=df,z,RMSEA=RMSEA,SRMR=SRMR,z =z,Call=cl)
class(result) <- c("psych","cortest")
return(result)
}
#SMR amd RMSEA added January 10, 2024
#version of June 25, 2008
#revised October 12, 2011 to allow non-square matrices
test.cortest <- function(R=NULL,n.var=10,n1=100,n2=1000,n.iter=1000) {
if(is.null(R)) R <- diag(1,n.var)
summary <- list()
for(i in 1:n.iter) {
x <- sim.correlation(R,n1)
if(n2 >3 ) {
y <- sim.correlation(R,n2)
summary[[i]] <- cortest(x,y,n1=n1,n2=n2)$prob
} else {summary[[i]] <- cortest(x,n1=n1)$prob }
}
result <- unlist(summary)
return(result)
}
# A simple function to find Fisher Information from a correlation matrix
# June 2, 2025
corInfo <- function(x,n=NULL,show=FALSE,fisher=FALSE) {
cl <- match.call()
if (!isCovariance(x)) {
R <- lowerCor(x,show=show)
n <- pairwiseCount(x) } else {R <- x}
if(fisher) R <- 0.5 * log((1 + R)/(1 - R))
diag(R) <- NA
R2 <- R*R
chisq <- sum(R2 * (n-3) , na.rm=TRUE)/2
info <- sum((n-2)/(1-R^2)^2,na.rm=TRUE)/2 #not Fisher information
Fisher.info <- sum((n * (1+R^2))/((1-R^2)^2),na.rm=TRUE)/2
df <- NCOL(x) * (NCOL(x)-1)/2
result= list(information = info, chisq=chisq, df=df, I = Fisher.info, n= n, Call=cl)
class(result)<- c("psych","corInfo")
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.