Nothing
#' Formality Score
#'
#' Transcript apply formality score by grouping variable(s) and optionally plot
#' the breakdown of the model.
#'
#' @param text.var The text variable (or an object from \code{\link[qdap]{pos}},
#' \code{\link[qdap]{pos_by}} or \code{\link[qdap]{formality}}. Passing the
#' later three object will greatly reduce run time.
#' @param grouping.var The grouping variables. Default \code{NULL} generates
#' one word list for all text. Also takes a single grouping variable or a list
#' of 1 or more grouping variables.
#' @param order.by.formality logical. If \code{TRUE} orders the results by
#' formality score.
#' @param digits The number of digits displayed.
#' @param \ldots Other arguments passed to \code{\link[qdap]{pos_by}}.
#' @section Warning: Heylighen & Dewaele (2002) state, "At present, a sample would
#' probably need to contain a few hundred words for the measure to be minimally
#' reliable. For single sentences, the F-value should only be computed for
#' purposes of illustration" (p. 24).
#' @details Heylighen & Dewaele(2002)'s formality score is calculated as:
#' \deqn{F = 50(\frac{n_{f}-n_{c}}{N} + 1)}{F = 50(n_f-n_c/N + 1)}
#'
#' Where:
#' \deqn{f = \left \{noun, \;adjective, \;preposition, \;article\right \}}{f = {noun,adjective, preposition, article}}
#' \deqn{c = \left \{pronoun, \;verb, \;adverb, \;interjection\right \}}{c = {pronoun, verb, adverb, interjection}}
#' \deqn{N = \sum{(f \;+ \;c \;+ \;conjunctions)}}{N = \sum(f + c + conjunctions)}
#' @return A list containing at the following components:
#' \item{text}{The text variable}
#' \item{POStagged}{Raw part of speech for every word of the text variable}
#' \item{POSprop}{Part of speech proportion for every word of the text variable}
#' \item{POSfreq}{Part of speech count for every word of the text variable}
#' \item{pos.by.freq}{The part of speech count for every word of the text
#' variable by grouping variable(s)}
#' \item{pos.by.prop}{The part of speech proportion for every word of the text
#' variable by grouping variable(s)}
#' \item{form.freq.by}{The nine broad part of speech categories count for every
#' word of the text variable by grouping variable(s)}
#' \item{form.prop.by}{The nine broad part of speech categories proportion for
#' every word of the text variable by grouping variable(s)}
#' \item{formality}{Formality scores by grouping variable(s)}
#' \item{pos.reshaped}{An expanded formality scores output (grouping,
#' word.count, pos & form.class) by word}
#' @references Heylighen, F., & Dewaele, J.M. (2002). Variation in the
#' contextuality of language: An empirical measure. Context in Context, Special
#' issue of Foundations of Science, 7 (3), 293-340.
#' @export
#' @rdname formality
#' @examples
#' \dontrun{
#' with(DATA, formality(state, person))
#' (x1 <- with(DATA, formality(state, list(sex, adult))))
#' plot(x1)
#' plot(x1, short.names = FALSE)
#'
#' scores(x1)
#' counts(x1)
#' proportions(x1)
#' preprocessed(x1)
#'
#' plot(scores(x1))
#' plot(counts(x1))
#' plot(proportions(x1), high="darkgreen")
#' plot(preprocessed(x1))
#'
#' data(rajPOS) #A data set consisting of a pos list object
#' x2 <- with(raj, formality(rajPOS, act))
#' plot(x2)
#' cumulative(x2)
#' x3 <- with(raj, formality(rajPOS, person))
#' plot(x3, bar.colors="Dark2")
#' plot(x3, bar.colors=c("Dark2", "Set1"))
#' x4 <- with(raj, formality(rajPOS, list(person, act)))
#' plot(x4, bar.colors=c("Dark2", "Set1"))
#'
#' rajDEM <- key_merge(raj, raj.demographics) #merge demographics with transcript.
#' x5 <- with(rajDEM, formality(rajPOS, sex))
#' plot(x5, bar.colors="RdBu")
#' x6 <- with(rajDEM, formality(rajPOS, list(fam.aff, sex)))
#' plot(x6, bar.colors="RdBu")
#' x7 <- with(rajDEM, formality(rajPOS, list(died, fam.aff)))
#' plot(x7, bar.colors="RdBu", point.cex=2, point.pch = 3)
#' x8 <- with(rajDEM, formality(rajPOS, list(died, sex)))
#' plot(x8, bar.colors="RdBu", point.cex=2, point.pch = "|")
#'
#' names(x8)
#' colsplit2df(x8$formality)
#'
#' #pass an object from pos or pos_by
#' ltruncdf(with(raj, formality(x8 , list(act, person))), 6, 4)
#'
#' #=============#
#' ## ANIMATION ##
#' #=============#
#' ## EXAMPLE 1
#' form_ani <- formality(DATA.SPLIT$state, DATA.SPLIT$person)
#' forma <- Animate(form_ani, contextual="white", formal="blue",
#' current.color = "yellow", current.speaker.color="grey70")
#'
#' bgb <- vertex_apply(forma, label.color="grey80", size=20, color="grey40")
#' bgb <- edge_apply(bgb, label.color="yellow")
#'
#' print(bgb, bg="black", net.legend.color ="white", pause=1)
#'
#' ## EXAMPLE 2
#' form_ani2 <- formality(raj.act.1POS, mraja1spl$person)
#' forma2 <- Animate(form_ani2, contextual="white", formal="blue",
#' current.color = "yellow", current.speaker.color="grey70")
#'
#' bgb2 <- vertex_apply(forma2, label.color="grey80", size=17, color="grey40")
#' bgb2 <- edge_apply(bgb2, label.color="yellow")
#' print(bgb2, bg="black", pause=.75, net.legend.color = "white")
#'
#' ## EXAMPLE 3 (bar plot)
#' Animate(form_ani2, as.network=FALSE)
#'
#' #=====================#
#' ## Complex Animation ##
#' #=====================#
#' library(animation)
#' library(grid)
#' library(gridBase)
#' library(qdap)
#' library(igraph)
#' library(plotrix)
#'
#' form_ani2 <- formality(raj.act.1POS, mraja1spl$person)
#'
#' ## Set up the network version
#' form_net <- Animate(form_ani2, contextual="white", formal="blue",
#' current.color = "yellow", current.speaker.color="grey70")
#' bgb <- vertex_apply(form_net, label.color="grey80", size=17, color="grey40")
#' bgb <- edge_apply(bgb, label.color="yellow")
#'
#'
#' ## Set up the bar version
#' form_bar <- Animate(form_ani2, as.network=FALSE)
#'
#' ## Generate a folder
#' loc <- folder(animation_formality)
#'
#' ## Set up the plotting function
#' oopt <- animation::ani.options(interval = 0.1)
#'
#'
#' FUN <- function(follow=FALSE, theseq = seq_along(bgb)) {
#'
#' Title <- "Animated Formality: Romeo and Juliet Act 1"
#' Legend <- c(.2, -1, 1.5, -.95)
#' Legend.cex <- 1
#'
#' lapply(theseq, function(i) {
#' if (follow) {
#' png(file=sprintf("%s/images/Rplot%s.png", loc, i),
#' width=650, height=725)
#' }
#' ## Set up the layout
#' layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
#'
#' ## Plot 1
#' par(mar=c(2, 0, 2, 0), bg="black")
#' #par(mar=c(2, 0, 2, 0))
#' set.seed(22)
#' plot.igraph(bgb[[i]], edge.curved=TRUE)
#' graphics::mtext(Title, side=3, col="white")
#' color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
#' c("Contextual", "Formal"), attributes(bgb)[["legend"]],
#' cex = Legend.cex, col="white")
#'
#' ## Plot2
#' plot.new()
#' vps <- baseViewports()
#'
#' uns <- unit(c(-1.3,.5,-.75,.25), "cm")
#' p <- form_bar[[i]] +
#' theme(plot.margin = uns,
#' text=element_text(color="white"),
#' legend.text=element_text(color="white"),
#' legend.background = element_rect(fill = "black"),
#' plot.background = element_rect(fill = "black",
#' color="black"))
#' print(p,vp = vpStack(vps$figure,vps$plot))
#' animation::ani.pause()
#'
#' if (follow) {
#' dev.off()
#' }
#' })
#'
#' }
#'
#' FUN()
#'
#' ## Detect OS
#' type <- if(.Platform$OS.type == "windows") shell else system
#'
#' saveHTML(FUN(, 1:20), autoplay = FALSE, loop = TRUE, verbose = FALSE,
#' ani.height = 1000, ani.width=650,
#' outdir = loc, single.opts =
#' "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
#'
#' FUN(TRUE)
#'
#' #==================#
#' ## Static Network ##
#' #==================#
#' (formdat <- with(sentSplit(DATA, 4), formality(state, person)))
#' m <- Network(formdat)
#' m
#' print(m, bg="grey97", vertex.color="grey75")
#'
#' print(m, title="Formality Discourse Map", title.color="white", bg="black",
#' legend.text.color="white", vertex.label.color = "grey70",
#' edge.label.color="yellow")
#'
#' ## or use themes:
#' dev.off()
#' m + qtheme()
#' m + theme_nightheat
#' dev.off()
#' m + theme_nightheat(title="Formality Discourse Map",
#' vertex.label.color = "grey50")
#'
#' #===============================#
#' ## Formality Over Time Example ##
#' #===============================#
#' formpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) {
#' formality(x)
#' })
#' formplots <- lapply(seq_along(formpres), function(i) {
#' m <- plot(cumulative(formpres[[i]]))
#' if (i != 2) m <- m + ylab("")
#' if (i != 3) m <- m + xlab(NULL)
#' m + ggtitle(paste("Debate", i))
#' })
#'
#' library(grid)
#' library(gridExtra)
#' do.call(grid.arrange, formplots)
#' }
formality <- function(text.var, grouping.var = NULL,
order.by.formality = TRUE, digits = 2, ...){
if(is.null(grouping.var)) {
gv <- TRUE
G <- "all"
} else {
gv <- FALSE
if (is.list(grouping.var)) {
m <- unlist(as.character(substitute(grouping.var))[-1])
m <- sapply(strsplit(m, "$", fixed=TRUE), function(x) {
x[length(x)]
}
)
G <- paste(m, collapse="&")
} else {
G <- as.character(substitute(grouping.var))
G <- G[length(G)]
}
}
if(is.null(grouping.var)){
grouping.var <- rep("all", length(text.var))
} else {
if(is.list(grouping.var) & length(grouping.var)>1) {
grouping.var <- apply(data.frame(grouping.var), 1, function(x){
if (any(is.na(x))){
NA
}else{
paste(x, collapse = ".")
}
}
)
} else {
grouping.var <- unlist(grouping.var)
}
}
if (!gv) {
pos.list <- pos_by(text.var = text.var,
grouping.var = grouping.var, digits = digits, ...)
} else {
pos.list <- suppressWarnings(pos_by(text.var = text.var,
grouping.var = NULL, digits = digits, ...))
}
text.var <- pos.list$text
WOR <- pos.list[["POStagged"]][["word.count"]]
## WOR <- word_count(text.var)
X <- pos.list[["pos.by.freq"]]
nameX <- rownames(X)
X <- data.frame(X, stringsAsFactors = FALSE)
xn <- nrow(X)
X$JI <- rep(0, xn)
X$JK <- rep(0, xn)
if (!gv){
stv <- split(text.var, grouping.var)
stv <- stv[sapply(stv, function(x) !identical(x, character(0)))]
articles <- unlist(lapply(stv, function(x){
sum(article(x))
}
))
} else {
articles <- sum(article(text.var))
}
if (!is.null(X$DT)) {
PD <- X$DT-articles
} else {
PD <- rep(0, nrow(X))
}
DF1 <- DF2 <- data.frame(
noun = rowSums(X[, names(X) %in% c("NN", "NNS", "NNP", "NNPS",
"POS", "JI", "JK")]),
adj = rowSums(cbind(X[, names(X) %in% c("CD", "JJ", "JJR", "JJS",
"JI", "JK")], PD)),
prep = rowSums(X[, names(X) %in% c("IN", "RP", "TO", "JI", "JK")]),
articles = articles,
pronoun = rowSums(X[, names(X) %in% c("PRP", "PRP$", "PRP.", "WDT",
"WP", "WP$", "WP.", "JI", "JK", "EX")]),
verb = rowSums(X[, names(X) %in% c("MD", "VB", "VBD", "VBG",
"VBN", "VBP", "VBZ", "JI", "JK")]),
adverb = rowSums(X[, names(X) %in% c("RB", "RBR", "RBS", "WRB",
"JI", "JK")]),
interj = rowSums(X[, names(X) %in% c("UH", "JI", "JK")]), stringsAsFactors = FALSE)
DF1RS <- rowSums(DF1)
if (!gv) {
WOR <- sapply(split(WOR, grouping.var), sum, na.rm = TRUE)
} else {
WOR <- sum(WOR, na.rm=TRUE)
}
DF2$other <- DF1$other <- WOR - DF1RS
DF1 <- do.call(rbind, lapply(1:nrow(DF1), function(i) 100*(DF1[i, ]/WOR[i])))
FOR <- (rowSums(cbind(DF1[, "noun"], DF1[, "articles"], DF1[, "adj"], DF1[, "prep"])) -
rowSums(cbind(DF1[, "pronoun"], DF1[, "verb"], DF1[, "adverb"], DF1[, "interj"])) + 100)/2
if(!gv) {
FOR <- data.frame(replace = X[, 1], word.count = WOR, formality = FOR, stringsAsFactors = FALSE)
colnames(FOR)[1] <- G
} else {
FOR <- data.frame(replace = X[, 1], word.count = WOR,
formality = FOR, stringsAsFactors = FALSE)
colnames(FOR)[1] <- G
}
if (!gv & order.by.formality) {
FOR <- FOR[order(-FOR$formality), ]
rownames(FOR) <- NULL
}
if (!gv) {
prop.by <- data.frame(var=names(WOR),
word.count = WOR,
apply(DF1, 2, round, digits = digits), stringsAsFactors = FALSE)
freq.by <- data.frame(var=names(WOR),
word.count = WOR, DF2, stringsAsFactors = FALSE)
} else {
prop.by <- data.frame(var="all",
word.count = sum(WOR, na.rm = TRUE), DF1, stringsAsFactors = FALSE)
freq.by <- data.frame(var="all",
word.count = sum(WOR, na.rm = TRUE), DF2, stringsAsFactors = FALSE)
}
colnames(prop.by)[1] <- colnames(freq.by)[1] <- colnames(FOR)[1]
rownames(prop.by) <- rownames(freq.by) <- NULL
o <- unclass(pos.list)
o$form.freq.by <- freq.by
o$form.prop.by <- prop.by
o$formality <- FOR
dat <- stats::reshape(freq.by,
direction="long",
varying=list(c(3:11)),
idvar= names(freq.by)[c(1:2)],
timevar="pos",
v.names=c("freq"),
times =names(freq.by)[-c(1:2)])
colnames(dat)[1] <- "grouping"
ON <- sum(dat[, "pos"] == "other")
dat[, "form.class"] <- c(rep(c("formal", "contectual"),
each = (nrow(dat) - ON)/2), rep("other", ON))
dat <- dat[rep(seq_len(dim(dat)[1]), dat[, 4]), -4]
dat[, "pos"] <- factor(dat[, "pos"], levels=unique(dat[, "pos"]))
dat[, "form.class"] <- factor(dat[, "form.class"],
levels=unique(dat[, "form.class"]))
row.names(dat) <- NULL
o$pos.reshaped <- dat
o$group <- G
class(o) <- "formality"
attributes(o)[["digits"]] <- digits
return(o)
}
## Helper function to find articles
article <- function(x) {
if (identical(x, character(0))) {
return(0)
} else {
WORDS <- rm_stopwords(x, stopwords = NULL,
unlist = FALSE, strip = TRUE)
sapply(WORDS, function(x) sum(x %in% c("the", "an", "a"),
na.rm = TRUE ))
}
}
#' Plots a formality Object
#'
#' Plots a formality object including the parts of speech used to
#' calculate contextual/formal speech.
#'
#' @param x The formality object.
#' @param point.pch The plotting symbol.
#' @param point.cex The plotting symbol size.
#' @param point.colors A vector of colors (length of two) to plot word count and
#' formality score.
#' @param bar.colors A palette of colors to supply to the bars in the
#' visualization. If two palettes are provided to the two bar plots
#' respectively.
#' @param short.names logical. If TRUE shortens the length of legend and label
#' names for more compact plot width.
#' @param min.wrdcnt A minimum word count threshold that must be achieved to be
#' considered in the results. Default includes all subgroups.
#' @param order.by.formality logical. If \code{TRUE} the group formality plot
#' will be ordered by average formality score, otherwise alphabetical order is
#' assumed.
#' @param plot logical. If \code{TRUE} the plot will automatically plot.
#' The user may wish to set to \code{FALSE} for use in knitr, sweave, etc.
#' to add additional plot layers.
#' @param \ldots ignored
#' @return Invisibly returns the \code{ggplot2} objects that form the larger
#' plot.
#' @method plot formality
#' @import RColorBrewer
#' @importFrom gridExtra grid.arrange
#' @importFrom qdapTools lookup
#' @importFrom ggplot2 ggplot geom_bar coord_flip aes ylab xlab theme ggtitle scale_y_continuous scale_fill_brewer facet_grid scale_x_discrete scale_fill_discrete geom_point geom_text labs scale_size_continuous
#' @export
plot.formality <- function(x, point.pch = 20, point.cex = .5,
point.colors = c("gray65", "red"), bar.colors = NULL,
short.names = TRUE, min.wrdcnt = NULL, order.by.formality = TRUE,
plot = TRUE, ...) {
word.count <- NULL
grouping <- form.class <- NULL
dat <- x$pos.reshaped
FOR <- x$formality
G <- x$group
if (!is.null(min.wrdcnt)){
dat <- dat[dat[, "word.count"] > min.wrdcnt, ,drop = TRUE]
dat[, 1] <- factor(dat[, 1])
FOR <- FOR[FOR[, "word.count"] > min.wrdcnt, ,drop = TRUE]
}
if(short.names){
dat[, "form.class"] <- lookup(dat[, "form.class"],
c("formal", "contectual", "other"),
c("form", "cont", "other"))
}
if (order.by.formality) {
dat[, "grouping"] <- factor(dat[, "grouping"], levels=rev(FOR[, 1]))
FOR[, 1] <- factor(FOR[, 1], levels=rev(FOR[, 1]))
}
YY <- ggplot(dat, aes(grouping, fill=form.class)) +
geom_bar(position='fill') +
coord_flip() + labs(fill=NULL) +
ylab("proportion") + xlab(G) +
theme(legend.position = 'bottom') +
ggtitle("Percent Contextual-Formal") +
scale_y_continuous(breaks = c(0, .25, .5, .75, 1),
labels=c("0", ".25", ".5", ".75", "1"))
if (!is.null(bar.colors)) {
YY <- YY + suppressWarnings(scale_fill_brewer(palette =
utils::head(bar.colors, 1)))
}
dat2 <- dat[dat[, "pos"] != "other", ]
dat2[, "pos"] <- factor(dat2[, "pos"])
dat2[, "form.class"] <- factor(dat2[, "form.class"])
if(short.names) {
LAB <- c("noun", "adj", "prep", "art", "pro", "verb",
"adverb", "interj")
} else {
LAB <- c("noun", "adjective", "preposition",
"articles", "pronoun", "verb", "adverb", "interjection")
}
LAB2 <- LAB[substring(LAB, 1, 3) %in% substring(levels(dat2$pos), 1, 3)]
XX <- ggplot(data=dat2, aes(grouping, fill=pos)) +
geom_bar(position='fill') + coord_flip() +
facet_grid(~form.class, scales="free", margins = TRUE) +
scale_x_discrete(drop=F) + labs(fill=NULL) +
scale_y_continuous(breaks = c(0, .25, .5, .75, 1),
labels=c("0", ".25", ".5", ".75", "1")) +
ylab("proportion") + xlab(G) +
theme(legend.position = 'bottom') +
ggtitle("Percent Parts of Speech By Contextual-Formal")
if (!is.null(bar.colors)) {
XX <- XX + scale_fill_brewer(palette=utils::tail(bar.colors, 1),
name = "", breaks=levels(dat2$pos), labels = LAB2)
} else {
XX <- XX + scale_fill_discrete(name = "",
breaks=levels(dat2$pos), labels = LAB2)
}
names(FOR)[1] <- "grouping"
buffer <- diff(range(FOR$formality))*.05
ZZ <- ggplot(data=FOR, aes(grouping, formality, size=word.count)) +
geom_point(colour=point.colors[1]) + coord_flip()+
geom_text(aes(label = word.count), vjust = 1.2, size = 3,
position = "identity",colour = "grey30") +
labs(size="word count") +
theme(legend.position = 'bottom') +
ggtitle("F Measure (Formality)") +
scale_y_continuous(limits=c(min(FOR$formality)-buffer,
max(FOR$formality) + buffer)) +
scale_size_continuous(range = c(1, 8)) + xlab(G) +
if (point.pch == "|") {
geom_text(aes(label = "|"), colour=point.colors[2],
size=point.cex, position = "identity", hjust = .25,
vjust = .25)
} else {
geom_point(colour=point.colors[2], shape=point.pch,
size=point.cex)
}
if (plot) {
suppressWarnings(grid.arrange(YY, XX,
ZZ, widths= grid::unit(c(.24, .47, .29), "native"), ncol=3))
}
invisible(list(f1 = XX, f2 = YY, f3 = ZZ))
}
#' Prints a formality Object
#'
#' Prints a formality object.
#'
#' @param x The formality object.
#' @param digits The number of digits to print.
#' @param \ldots ignored
#' @method print formality
#' @export
print.formality <-
function(x, digits, ...) {
y <- x[["formality"]]
if ("formality" %in% colnames(y)) {
if (missing(digits)) {
if(!is.null(attributes(x)[["digits"]])) {
digits <- attributes(x)[["digits"]]
} else {
digits <- 2
}
}
y[, "formality"] <- round(y[, "formality"], digits = digits)
}
print(y)
}
#' Formality
#'
#' View formality scores.
#'
#' formality Method for scores
#' @param x The \code{\link[qdap]{formality}} object.
#' @param \ldots ignored
#' @export
#' @method scores formality
scores.formality <- function(x, ...) {
out <- x[["formality"]]
attributes(out) <- list(
class = c("formality_scores", class(out)),
type = "formality_scores",
names = colnames(out),
row.names = rownames(out)
)
out
}
#' Formality
#'
#' View formality counts.
#'
#' formality Method for counts
#' @param x The \code{\link[qdap]{formality}} object.
#' @param \ldots ignored
#' @export
#' @method counts formality
counts.formality <- function(x, ...) {
out <- x[["form.freq.by"]]
attributes(out) <- list(
class = c("table_count", class(out)),
type = "formality_counts",
names = colnames(out),
row.names = rownames(out)
)
out
}
#' Formality
#'
#' View \code{\link[qdap]{formality}} proportions.
#'
#' formality Method for proportions
#' @param x The formality object.
#' @param \ldots ignored
#' @export
#' @method proportions formality
proportions.formality <- function(x, ...) {
out <- x[["form.freq.by"]]
out[, -c(1:2)] <- out[, -c(1:2)]/out[, 2]
attributes(out) <- list(
class = c("table_proportion", class(out)),
type = "formality_proportions",
names = colnames(out),
row.names = rownames(out)
)
out
}
#' Formality
#'
#' View formality preprocessed.
#'
#' formality Method for preprocessed
#' @param x The \code{\link[qdap]{formality}} object.
#' @param \ldots ignored
#' @export
#' @method preprocessed formality
preprocessed.formality <- function(x, ...) {
out <- x[["POStagged"]]
attributes(out) <- list(
class = c("pos_preprocessed", class(out)),
type = "formality_preprocessed",
names = colnames(out),
row.names = rownames(out)
)
out
}
#' Prints a formality_scores object
#'
#' Prints a formality_scores object
#'
#' @param x The formality_scores object
#' @param \ldots ignored
#' @export
#' @method print formality_scores
print.formality_scores <-
function(x, ...) {
WD <- options()[["width"]]
options(width=3000)
class(x) <- "data.frame"
print(x)
options(width=WD)
}
#' Prints a pos_preprocessed object
#'
#' Prints a pos_preprocessed object
#'
#' @param x The pos_preprocessed object
#' @param \ldots ignored
#' @export
#' @method print pos_preprocessed
print.pos_preprocessed <-
function(x, ...) {
WD <- options()[["width"]]
options(width=3000)
class(x) <- "data.frame"
print(x)
options(width=WD)
}
#' Plots a formality_scores Object
#'
#' Plots a formality_scores object.
#'
#' @param x The formality_scores object.
#' @param \ldots ignored
#' @importFrom ggplot2 ggplot aes geom_point scale_y_continuous ggtitle theme labs geom_text xlab ylab scale_size_continuous
#' @method plot formality_scores
#' @export
plot.formality_scores <- function(x, ...){
group <- formality <- word.count <- NULL
point.colors <- c("gray65", "red")
buffer <- diff(range(x$formality))*.05
nms1 <- colnames(x)[1]
colnames(x)[1] <- "group"
x <- x[order(x["formality"]), ]
x[, "group"] <- factor(x[, "group"], levels = x[, "group"])
ggplot(data=x, aes(group, formality, size=word.count)) +
geom_point(colour=point.colors[1]) + coord_flip()+
geom_text(aes(label = word.count), vjust = 1.2, size = 3,
position = "identity",colour = "grey30") +
labs(size="word count") +
theme(legend.position = 'bottom') +
ggtitle("F Measure (Formality)") +
scale_y_continuous(limits=c(min(x$formality)-buffer,
max(x$formality) + buffer)) +
geom_point(color="red", size=.4) +
ylab("Formality") + xlab(plot_namer(nms1)) +
scale_size_continuous(name="Word Count")
}
Animate_formality_net <- function(x, contextual, formal,
edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3,
current.color = "black", missing.color="purple", current.speaker.color,
non.speaker.color = NA, ...){
v <- cbind.data.frame(group=attributes(x)[["grouping.var"]],
x[["POSfreq"]], stringsAsFactors = FALSE)
nas <- which(is.na(x[["text"]]))
x[["text"]][nas] <- ""
if(!identical(nas, integer(0))) {
x[["POSfreq"]][nas,] <- 0
x[["POSfreq"]][nas, 1] <- 1
}
# v <- v[!is.na(x[["text"]]), ]
# x[["text"]] <- x[["text"]][!is.na(x[["text"]])]
## Count the articles per row
articles <- unlist(lapply(x[["text"]], function(x){
if(identical(x, character(0)) ) return(0)
sum(article(x))
}))
if (!is.null(v$DT)) {
PD <- v$DT-articles
} else {
PD <- rep(0, nrow(v))
}
## tally parts of speech for formality stat
z <- data.frame(v[, 1:2, drop=FALSE],
noun = rowSums(v[, names(v) %in% c("NN", "NNS", "NNP", "NNPS",
"POS", "JI", "JK"), drop=FALSE]),
adj = rowSums(cbind(v[, names(v) %in% c("CD", "JJ", "JJR", "JJS",
"JI", "JK"), drop=FALSE], PD)),
prep = rowSums(v[, names(v) %in% c("IN", "RP", "TO", "JI", "JK"),
drop=FALSE]),
articles = articles,
pronoun = rowSums(v[, names(v) %in% c("PRP", "PRP$", "PRP.", "WDT",
"WP", "WP$", "WP.", "JI", "JK", "EX"), drop=FALSE]),
verb = rowSums(v[, names(v) %in% c("MD", "VB", "VBD", "VBG",
"VBN", "VBP", "VBZ", "JI", "JK"), drop=FALSE]),
adverb = rowSums(v[, names(v) %in% c("RB", "RBR", "RBS", "WRB",
"JI", "JK"), drop=FALSE]),
interj = rowSums(v[, names(v) %in% c("UH", "JI", "JK"), drop=FALSE]))
qsep <- "|-|qdap|-|"
brks <- seq(0, 1, by=.001)
max.color.breaks <- length(brks)
y <- form_fun(z)
y[is.na(y[, 3]), -c(1:2)] <- c(1, rep(0, 5))
condlens <- rle(as.character(y[, 1]))
temp <- rep(paste0("X", pad(1:length(condlens[[2]]))),
condlens[[1]])
y <- list_df2df(lapply(split(y, temp), function(x) {
x[, 2] <- utils::tail(x[, 2], 1)
x
}))[, -1]
y <- colpaste2df(y, 1:2, keep.orig =FALSE, sep=qsep, name.sep="|")
y <- data.frame(y[, 7, drop=FALSE], y[, -7], check.names=FALSE, stringsAsFactors = FALSE)
y[, "id"] <- 1:nrow(y)
## get aggregated values iterating through rows
## sum wc, max(id), prop_wc
list_formality <- lapply(1:nrow(y), function(i) col_meaner(y[1:i, ]))
## combine into a dataframe by turn of talk
df_formality <- list_df2df(list_formality, "turn")
## set up color gradients
colfunc <- grDevices::colorRampPalette(c(contextual, formal))
cols <- colfunc(max.color.breaks)
## add colors to df_formality based on agrgegated
## average formality per edge
cuts <- cut(df_formality[, "prop_formal"], brks)
df_formality[, "color"] <- cuts %l% data.frame(cut(brks, brks), cols,
stringsAsFactors = FALSE)
## Handle missing data colors
missing <- df_formality[, "wc"] == "1" &
df_formality[, "formal"] =="0" &
df_formality[, "contextual"] == "0"
df_formality[missing , "color"] <- missing.color
## split it back into the iterative per row
## dataframes of aggregated values
list_formality <- lapply(split(df_formality[, -1], df_formality[, 1]),
function(x) {
y <- colsplit2df(x, sep=qsep)
colnames(y)[1:2] <- c("from", "to")
y
})
## create a single network plot with all values
dat <- sentCombine(x[["text"]], attributes(x)[["grouping.var"]])
theplot <- discourse_map(dat[, "text.var"], dat[, "grouping.var"],
...)[["plot"]]
## generate edge constant of needed
if (missing(edge.constant)) {
edge.constant <- length(unique(dat[, "grouping.var"])) * 2.5
}
## Add colors from the aggregated list of average polarities
## and output a corresponding list of network plots
new_form_nets <- lapply(list_formality, colorize, theplot)
## Add edge weights etc to each graph
igraph_objs <- stats::setNames(lapply(seq_along(new_form_nets),
function(i, grp =new_form_nets, len=length(unique(y[, 1])), sep=qsep){
## limit the edge weights (widths) of first 5 plots)
if (i %in% 1:5) {
edge.constant <- edge.constant/(len/i)
}
## calculate edge widths
cur <- list_formality[[i]]
cur[, "width"] <- edge.constant*cur[, "prop_wc"]
## get current edge
cur_edge <- which.max(cur[, "id"])
cur_edge2 <- max(cur[, "id"])
## create current edge label and formality sign
cur_form <- y[y[, "id"] == cur_edge2, "prop_formal"]
lab <- numbformat(cur_form, digits)
if(cur[cur[, "id"] == cur_edge2, "color"] == missing.color) {
lab <- "NA"
}
E(grp[[i]])$label <- NA
curkey <- data.frame(paste2(cur[cur_edge, 1:2], sep="|-|qdap|-|"), lab,
stringsAsFactors = FALSE)
## Set up widths and colors
tcols <- cur[, c("from", "to", "color"), drop=FALSE]
widths <- cur[, c("from", "to", "width"), drop=FALSE]
widths[, "width"] <- ceiling(widths[, "width"])
ekey <- paste2(edge_capture(grp[[i]]), sep=sep)
ckey <- colpaste2df(tcols, 1:2, sep = sep, keep.orig=FALSE)[, 2:1]
wkey <- colpaste2df(widths, 1:2, sep = sep, keep.orig=FALSE)[, 2:1]
E(grp[[i]])$width <- NAer(ekey %l% wkey, 1)
#plot(grp[[i]], edge.curved=TRUE)
E(grp[[i]])$color <- ekey %l% ckey
E(grp[[i]])$label <- ekey %l% curkey
V(grp[[i]])$frame.color <- NA
if (!is.null(current.speaker.color)) {
spkkey <- data.frame(as.character(cur[cur_edge, 1]), current.speaker.color,
stringsAsFactors = FALSE)
V(grp[[i]])$frame.color <- V(grp[[i]])$name %l% spkkey
}
V(grp[[i]])$frame.color[is.na(V(grp[[i]])$frame.color)] <- non.speaker.color
## change edge label color
E(grp[[i]])$label.color <- current.color
grp[[i]]
}), paste0("Turn_", pad(1:nrow(y))))
timings <- round(exp(y[, "wc"]/(max(y[, "wc"])/time.constant)))
if(wc.time) {
igraph_objs <- rep(igraph_objs, timings)
}
## starts with a blank object
igraph_objs <- rep(igraph_objs, c(2, rep(1, length(igraph_objs) - 1)))
len <- nchar(char2end(names(igraph_objs)[1], "_"))
names(igraph_objs)[1] <- sprintf("turn_%s", paste(rep(0, len), collapse=""))
uncol <- E(igraph_objs[[1]])$color
E(igraph_objs[[1]])$color <- NA
E(igraph_objs[[1]])$label.color <- NA
E(igraph_objs[[1]])$label <- NA
V(igraph_objs[[1]])$frame.color <- non.speaker.color
## end with no label or frame color
igraph_objs <- rep(igraph_objs, c(rep(1, length(igraph_objs) - 1), 2))
E(igraph_objs[[length(igraph_objs)]])$label.color <- NA
E(igraph_objs[[length(igraph_objs)]])$label <- NA
V(igraph_objs[[length(igraph_objs)]])$frame.color <- non.speaker.color
## add class info
class(igraph_objs) <- "animated_formality"
attributes(igraph_objs)[["title"]] <- title
attributes(igraph_objs)[["timings"]] <- timings
attributes(igraph_objs)[["type"]] <- "network"
attributes(igraph_objs)[["legend"]] <- cols
attributes(igraph_objs)[["data"]] <- list_formality
igraph_objs
}
form_fun <- function(z) {
out <- data.frame(formal=rowSums(z[, c("noun", "articles", "adj", "prep")]),
contextual=rowSums(z[, c("pronoun", "verb", "adverb", "interj")]))
out[, "total"] <- rowSums(out)
out[, paste0("prop_", names(out)[1:2])] <- out[, 1:2]/out[, 3]
data.frame(from=z[, 1], to=c(as.character(z[-1, 1]), "End"),
wc=z[, "wrd.cnt"], out)
}
col_meaner <- function(y) {
m <- utils::head(y, -1)
if (nrow(m) == "0") {
out <- utils::tail(y, 1)
out[, "prop_wc"] <- 1
return(out)
}
n <- matrix2df(do.call(rbind, lapply(split(m[, c(2:4, 8)], m[, 1]), function(x) {
if (nrow(x) == "0") return(NULL)
out <- data.frame(t(colSums(x[, c("wc", "formal", "contextual")])))
out[, "id"] <- max(x[, "id"])
out
})), "from|to")
n[, "total"] <- rowSums(n[3:4])
n[, paste0("prop_", names(n)[3:4])] <- n[, 3:4]/n[, 6]
n <- n[!n[, 1] %in% utils::tail(y, 1)[, 1], ]
out <- data.frame(rbind(n, utils::tail(y, 1)), row.names=NULL, check.names=FALSE,
stringsAsFactors = FALSE)
out[, "prop_wc"] <- out[, "wc"]/sum(out[, "wc"], na.rm=TRUE)
out
}
Animate_formality_bar <- function(x, wc.time = TRUE, time.constant = 2,
digits = 2, all.color.line = "red", plus.300.color = "grey40",
under.300.color = "grey88", ...) {
v <- cbind.data.frame(group=attributes(x)[["grouping.var"]],
x[["POSfreq"]])
colnms1 <- colnames(scores(x))[1]
ord <- levels(scores(x)[, 1])
nas <- which(is.na(x[["text"]]))
if(!identical(nas, integer(0))) {
x[["POSfreq"]][nas,] <- 0
x[["POSfreq"]][nas, 1] <- 1
}
## Count the articles per row
articles <- unlist(lapply(x[["text"]], function(x){
if(identical(x, character(0)) ) return(0)
sum(article(x))
}))
if (!is.null(v$DT)) {
PD <- v$DT-articles
} else {
PD <- rep(0, nrow(v))
}
## tally parts of speech for formality stat
z <- data.frame(v[, 1:2, drop=FALSE],
noun = rowSums(v[, names(v) %in% c("NN", "NNS", "NNP", "NNPS",
"POS", "JI", "JK"), drop=FALSE]),
adj = rowSums(cbind(v[, names(v) %in% c("CD", "JJ", "JJR", "JJS",
"JI", "JK"), drop=FALSE], PD)),
prep = rowSums(v[, names(v) %in% c("IN", "RP", "TO", "JI", "JK"),
drop=FALSE]),
articles = articles,
pronoun = rowSums(v[, names(v) %in% c("PRP", "PRP$", "PRP.", "WDT",
"WP", "WP$", "WP.", "JI", "JK", "EX"), drop=FALSE]),
verb = rowSums(v[, names(v) %in% c("MD", "VB", "VBD", "VBG",
"VBN", "VBP", "VBZ", "JI", "JK"), drop=FALSE]),
adverb = rowSums(v[, names(v) %in% c("RB", "RBR", "RBS", "WRB",
"JI", "JK"), drop=FALSE]),
interj = rowSums(v[, names(v) %in% c("UH", "JI", "JK"), drop=FALSE]))
qsep <- "|-|qdap|-|"
z_form <- z[, 1:2]
z_form[, "formal"] <- rowSums(z[, c("noun", "articles", "adj", "prep")])
z_form[, "contextual"] <- rowSums(z[, c("pronoun", "verb", "adverb", "interj")])
listdat <- lapply(1:nrow(z_form), function(i) {
dat <- z_form[1:i, ]
out <- agg_form(dat)
attributes(out)[["formality"]] <- form_stats_total(dat)
out
})
form_all <- sapply(listdat, function(x) attributes(x)[["formality"]])
thedat <- list_df2df(listdat, "row")
rng <- max(thedat[, "formality"], na.rm=TRUE)
theplot <- ggbar_form(listdat[[length(listdat)]], grp = colnms1, rng = rng,
colors=c(plus.300.color, under.300.color))
ggplots <- stats::setNames(lapply(seq_along(listdat), function(i, aplot=theplot) {
listdat[[i]][, "group"] <- factor(listdat[[i]][, "group"], levels=ord)
titlepol <- numbformat(form_all[i], digits)
aplot[["labels"]][["title"]] <- paste(sprintf("Total Discourse Formality: %s",
titlepol), sprintf("%sCurrent Speaker: %s", paste(rep(" ", 15),
collapse=""), z_form[i, 1]))
aplot[["data"]] <- listdat[[i]]
aplot + geom_hline(yintercept=form_all[i], size=1, color=all.color.line)
}), paste0("turn_", pad(1:length(listdat))))
wrds <- z_form[, "wrd.cnt"]
wrds[is.na(wrds)] <- 1
timings <- round(exp(wrds/(max(wrds)/time.constant)))
if(wc.time) {
ggplots <- rep(ggplots, timings)
}
## starts with a blank object and end match the network Animate
theplot[["data"]][, "formality"] <- NaN
ggplots <- unlist(list(list(theplot), ggplots,
ggplots[length(ggplots)]), recursive=FALSE)
len <- nchar(char2end(names(ggplots)[1], "_"))
names(ggplots)[1] <- sprintf("turn_%s", paste(rep(0, len), collapse=""))
## add class info
class(ggplots) <- "animated_formality"
attributes(ggplots)[["timings"]] <- timings
attributes(ggplots)[["type"]] <- "bar"
attributes(ggplots)[["legend"]] <- NULL
attributes(ggplots)[["data"]] <- listdat
ggplots
}
form_stats <- function(x) {
grp <- x[1, 1]
x[, 1] <- NULL
x <- colSums(x, na.rm=TRUE)
x[paste0("prop_", names(x)[2:3])] <- x[2:3]/x[1]
formality <- 50*(1 +(x["prop_formal"] - x["prop_contextual"])/x["wrd.cnt"])
data.frame(group=grp, wc=x["wrd.cnt"], prop_contextual=x["prop_contextual"],
prop_formal=x["prop_formal"], formality=formality, row.names=NULL,
Words = ifelse(x["wrd.cnt"] > 299, "300 Plus", "Less Than 300"),
stringsAsFactors = FALSE)
}
form_stats_total <- function(x) {
x[, 1] <- NULL
x <- colSums(x, na.rm=TRUE)
x[paste0("prop_", names(x)[2:3])] <- x[2:3]/x[1]
stats::setNames(50*(1 +(x["prop_formal"] - x["prop_contextual"])/x["wrd.cnt"]), "formality")
}
agg_form <- function(x) {
ldat <- split(x, x[, 1])
ldat <- ldat[sapply(ldat, nrow) > 0]
data.frame(do.call(rbind, lapply(ldat, form_stats)), row.names=NULL,
stringsAsFactors = FALSE)
}
ggbar_form <- function(dat, grp = grp, rng = rng, colors) {
padding <- rng*.05
levels(dat[, "Words"]) <- c("Less Than 300", "300 Plus")
ggplot2::ggplot(dat, aes_string(x="group")) +
ggplot2::geom_bar(aes_string(weight="formality", fill="Words")) +
ggplot2::ylab("Average Formality") +
ggplot2::xlab(paste(sapply(unlist(strsplit(grp, "&")), Caps), collapse = " ")) +
ggplot2::theme_bw() +
ggplot2::ggtitle(sprintf("Average Discourse Formality: %s", "")) +
ggplot2::theme(axis.text.x=element_text(angle = 90, vjust = .4, hjust = 1, size=11),
plot.title=element_text(hjust=0, size=11, color="grey60")) +
ggplot2::scale_x_discrete(drop=FALSE) +
ggplot2::scale_fill_manual(values=rev(colors), name="Number of Words", drop=FALSE) +
ggplot2::scale_y_continuous(expand = c(0,0), limits=c(0, rng + padding)) +
ggplot2::guides(fill=guide_legend(reverse=TRUE))
}
Animate_formality_text <- function(x, wc.time = TRUE, time.constant = 2,
width, just, coord, ...) {
txt <- lapply(x[["text"]], function(x){
paste(strwrap(x, width), collapse="\n")
}) %>% unlist
theplot <- ggplot2::ggplot(data.frame(x=0:1, y=0:1), ggplot2::aes(x, x, y=y)) +
ggplot2::geom_blank() + ggplot2::theme_bw() +
ggplot2::theme(
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
axis.text = ggplot2::element_blank()
) +
ggplot2::ylab(NULL) +
ggplot2::xlab(NULL)
ggplots <- lapply(txt, function(z){
theplot + ggplot2::annotate("text", x = coord[1],
y = coord[2], label = z, vjust = just[2], hjust = just[1], ...)
})
y <- preprocessed(x)
timings <- round(exp(y[["word.count"]]/(max(y[["word.count"]], na.rm=TRUE)/time.constant)))
if(wc.time) {
ggplots <- rep(ggplots, replace_nan(timings, is.na, 1))
}
## starts with a blank object and end match the network Animate
ggplots <- unlist(list(list(theplot), ggplots,
list(theplot)), recursive=FALSE)
## add class info
class(ggplots) <- "animated_formality"
attributes(ggplots)[["timings"]] <- timings
attributes(ggplots)[["type"]] <- "text"
attributes(ggplots)[["legend"]] <- NULL
attributes(ggplots)[["data"]] <- NULL
ggplots
}
#' Animate Formality
#'
#' \code{Animate.formality} - Animate a \code{\link[qdap]{formality}} object.
#'
#' formality Method for Animate
#' @param x A \code{\link[qdap]{formality}} object.
#' @param contextual The color to use for 0\% formality (purely contextual).
#' @param formal The color to use for 100\% formality (purely formal).
#' @param edge.constant A constant to multiple edge width by.
#' @param wc.time logical. If \code{TRUE} weights duration of frame by word
#' count.
#' @param time.constant A constant to divide the maximum word count by. Time
#' is calculated by `round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))`.
#' Therefore a larger constant will make the difference between the large and
#' small word counts greater.
#' @param title The title to apply to the animated image(s).
#' @param digits The number of digits to use in the current turn of talk
#' formality.
#' @param current.color The color to use for the current turn of talk formality.
#' @param current.speaker.color The color for the current speaker.
#' @param non.speaker.color The color for the speakers not currently speaking.
#' @param missing.color The color to use in a network plot for edges
#' corresponding to missing text data. Use \code{\link[stats]{na.omit}} before
#' hand to remove the missing values all together.
#' @param all.color.line The color to use for the total discourse formality
#' color line if \code{network = FALSE}.
#' @param plus.300.color The bar color to use for grouping variables exceeding
#' 299 words per Heylighen & Dewaele's (2002) minimum word recommendations.
#' @param under.300.color The bar color to use for grouping variables less
#' than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations.
#' @param type Character string of either \code{"network"} (as a network
#' plot), \code{"bar"} (as a bar plot), or \code{"text"} (as a simple
#' colored text plot).
#' @param width The width to break text at if \code{type = "text"}.
#' @param coord The x/y coordinate to plot the text if \code{type = "text"}.
#' @param just The \code{hjust} and \code{vjust} values to use for the text if
#' \code{type = "text"}.
#' @param \ldots Other arguments passed to \code{\link[qdap]{discourse_map}} or
#' \code{\link[ggplot2]{annotate}} if \code{type = "text"}.
#' @note The width of edges is based on words counts on that edge until that
#' moment divided by total number of words used until that moment. Thicker
#' edges tend to thin as time passes. The actual duration the current edge
#' stays as the \code{current.color} is based on word counts for that particular
#' flow of dialogue divided by total dialogue (words) used. The edge label is
#' the current formality for that turn of talk (an aggregation of the sub
#' sentences of the current turn of talk). The coloring of the current edge
#' formality is produced at th sentence level, therefor a label may indicate a
#' positive current turn of talk, while the coloring may indicate a negative
#' sentences. Coloring is based on percentage of formal parts of speech (i.e.,
#' noun, adjective, preposition, article).
#' @import igraph
#' @importFrom qdapTools %l% matrix2df list_df2df
#' @importFrom ggplot2 ggplot geom_hline geom_bar ylab xlab theme ggtitle theme_bw ylim element_text scale_x_discrete scale_fill_manual
#' @export
#' @method Animate formality
Animate.formality <- function(x, contextual = "yellow", formal = "red",
edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3,
current.color = "black", current.speaker.color = NULL, non.speaker.color = NA,
missing.color = "purple", all.color.line = "red", plus.300.color = "grey40",
under.300.color = "grey88", type = "network", width = 65, coord = c(.0, .5),
just = c(.0, .5), ...){
switch(type,
network = {
Animate_formality_net(x = x, contextual = contextual, formal = formal,
edge.constant = edge.constant, wc.time = wc.time, time.constant = time.constant,
title = title, digits = digits, current.color = current.color,
current.speaker.color = current.speaker.color,
non.speaker.color = non.speaker.color, missing.color = missing.color ,
...)
},
bar = {
Animate_formality_bar(x = x, wc.time = wc.time,
time.constant = time.constant, digits = digits,
all.color.line = all.color.line, plus.300.color = plus.300.color,
under.300.color = under.300.color, ...)
},
text = {
Animate_formality_text(x = x, wc.time = wc.time,
coord = coord, just = just, width=width, ...)
}, stop("`type` must be \"network\", \"bar\", or \"text\"")
)
}
#' Prints a animated_formality Object
#'
#' Prints a animated_formality object.
#'
#' @param x The animated_formality object.
#' @param title The title of the plot.
#' @param layout \pkg{igraph} \code{layout} to use.
#' @param seed The seed to use in plotting the graph.
#' @param pause The length of time to pause between plots.
#' @param legend The coordinates of the legend. See
#' \code{\link[plotrix]{color.legend}} for more information.
#' @param legend.cex character expansion factor. \code{NULL} and \code{NA} are
#' equivalent to 1.0. See \code{\link[graphics]{mtext}} for more information.
#' @param bg The color to be used for the background of the device region. See
#' \code{\link[graphics]{par}} for more information.
#' @param net.legend.color The text legend color for the network plot.
#' @param \ldots Other Arguments passed to \code{\link[igraph]{plot.igraph}}.
#' @import igraph
#' @importFrom plotrix color.legend
#' @method print animated_formality
#' @export
print.animated_formality <- function(x, title = NULL,
seed = sample(1:10000, 1), layout=layout.auto, pause = 0,
legend = c(-.5, -1.5, .5, -1.45), legend.cex=1, bg=NULL,
net.legend.color = "black", ...){
if (is.null(title)) {
title <- attributes(x)[["title"]]
}
switch(attributes(x)[["type"]],
network = {
invisible(lapply(x, function(y) {
set.seed(seed)
graphics::par(bg = bg)
plot.igraph(y, edge.curved=TRUE, layout=layout)
if (!is.null(title)) {
graphics::mtext(title, side=3)
}
if (!is.null(legend)) {
color.legend(legend[1], legend[2], legend[3], legend[4],
c("Contextual", "Formal"), attributes(x)[["legend"]],
cex = legend.cex, col=net.legend.color, ...)
}
if (pause > 0) Sys.sleep(pause)
}))
},
bar = {
invisible(lapply(x, print))
},
text = {
invisible(lapply(x, print))
}, stop("`type` must be \"network\", \"bar\", or \"text\"")
)
}
#' Plots a animated_formality Object
#'
#' Plots a animated_formality object.
#'
#' @param x The animated_formality object.
#' @param \ldots Other arguments passed to \code{print.animated_formality }.
#' @method plot animated_formality
#' @export
plot.animated_formality <- function(x, ...){
print(x, ...)
}
#' Network Formality
#'
#' \code{Network.formality} - Network a \code{\link[qdap]{formality}} object.
#'
#' formality Method for Network
#' @param x A \code{\link[qdap]{formality}} object.
#' @param contextual The color to use for 0\% formality (purely contextual).
#' @param formal The color to use for 100\% formality (purely formal).
#' @param edge.constant A constant to multiple edge width by.
#' @param title The title to apply to the \code{Network}ed image(s).
#' @param digits The number of digits to use in the current turn of talk
#' formality.
#' @param plus.300.color The bar color to use for grouping variables exceeding
#' 299 words per Heylighen & Dewaele's (2002) minimum word recommendations.
#' @param under.300.color The bar color to use for grouping variables less
#' than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations.
#' @param missing.color The color to use in a network plot for edges
#' corresponding to missing text data. Use \code{\link[stats]{na.omit}} before
#' hand to remove the missing values all together.
#' @param \ldots Other arguments passed to \code{\link[qdap]{discourse_map}}.
#' @import igraph
#' @importFrom qdapTools %l%
#' @export
#' @method Network formality
Network.formality <- function(x, contextual = "yellow", formal = "red",
edge.constant, title = NULL, digits = 3, plus.300.color = "grey40",
under.300.color = "grey88", missing.color = "purple", ...){
v <- cbind.data.frame(group=attributes(x)[["grouping.var"]],
x[["POSfreq"]])
nas <- which(is.na(x[["text"]]))
x[["text"]][nas] <- ""
if(!identical(nas, integer(0))) {
x[["POSfreq"]][nas,] <- 0
x[["POSfreq"]][nas, 1] <- 1
}
## Count the articles per row
articles <- unlist(lapply(x[["text"]], function(x){
if(identical(x, character(0)) ) return(0)
sum(article(x))
}))
if (!is.null(v$DT)) {
PD <- v$DT-articles
} else {
PD <- rep(0, nrow(v))
}
## tally parts of speech for formality stat
z <- data.frame(v[, 1:2, drop=FALSE],
noun = rowSums(v[, names(v) %in% c("NN", "NNS", "NNP", "NNPS",
"POS", "JI", "JK"), drop=FALSE]),
adj = rowSums(cbind(v[, names(v) %in% c("CD", "JJ", "JJR", "JJS",
"JI", "JK"), drop=FALSE], PD)),
prep = rowSums(v[, names(v) %in% c("IN", "RP", "TO", "JI", "JK"),
drop=FALSE]),
articles = articles,
pronoun = rowSums(v[, names(v) %in% c("PRP", "PRP$", "PRP.", "WDT",
"WP", "WP$", "WP.", "JI", "JK", "EX"), drop=FALSE]),
verb = rowSums(v[, names(v) %in% c("MD", "VB", "VBD", "VBG",
"VBN", "VBP", "VBZ", "JI", "JK"), drop=FALSE]),
adverb = rowSums(v[, names(v) %in% c("RB", "RBR", "RBS", "WRB",
"JI", "JK"), drop=FALSE]),
interj = rowSums(v[, names(v) %in% c("UH", "JI", "JK"), drop=FALSE]))
qsep <- "|-|qdap|-|"
brks <- seq(0, 1, by=.001)
max.color.breaks <- length(brks)
condlens <- rle(as.character(z[, 1]))
temp <- rep(paste0("X", pad(1:length(condlens[[2]]))),
condlens[[1]])
z <- list_df2df(lapply(split(z, temp), function(x) {
data.frame(x[1, 1, drop=FALSE], t(colSums(x[, -1, drop=FALSE])))
}))[, -1]
z[, "from"] <- as.character(z[, "group"])
z[, "to"] <- c(z[-1, "from"], "end")
nc <- ncol(z[, -1])
z <- colpaste2df(z[, -1], (nc-1):nc, keep.orig =FALSE, sep=qsep, name.sep="|")
nc <- ncol(z)
z <- list_df2df(lapply(split(z[, -nc], z[, nc]), function(x) {
data.frame(t(colSums(x)))
}), "group")
y <- form_fun2(z)
df_formality <- colsplit2df(y, sep=qsep, name.sep="|")
df_formality[, "to"] <- gsub("end", "End", df_formality[, "to"])
## set up color gradients
colfunc <- grDevices::colorRampPalette(c(contextual, formal))
cols <- colfunc(max.color.breaks)
## add colors to df_formality based on agrgegated
## average formality per edge
cuts <- cut(df_formality[, "prop_formal"], c(-1, brks, 2) )
df_formality[, "color"] <- cuts %l% data.frame(cut(brks, brks), cols,
stringsAsFactors = FALSE)
## Handle missing data colors
missing <- df_formality[, "wc"] == "1" &
df_formality[, "formal"] =="0" &
df_formality[, "contextual"] == "0"
df_formality[missing , "color"] <- missing.color
## create a single network plot with all values
dat <- sentCombine(x[["text"]], attributes(x)[["grouping.var"]])
theplot <- discourse_map(dat[, "text.var"], dat[, "grouping.var"],
...)[["plot"]]
## generate edge constant of needed
if (missing(edge.constant)) {
edge.constant <- length(unique(dat[, "grouping.var"])) * 2.5
}
## Add colors from
theplot <- colorize(df_formality, theplot)
theedges <- paste2(edge_capture(theplot), sep=qsep)
df_formality <- colpaste2df(df_formality, 1:2, sep=qsep, name.sep="|")
counts <- stats::aggregate(wc~from, df_formality, sum)
counts[, "vcol"] <- ifelse(counts[, "wc"] > 299,
plus.300.color, under.300.color)
V(theplot)$color <- lookup(V(theplot)$name, counts[, -2], missing = under.300.color)
E(theplot)$label <-lookup(theedges, df_formality[, "from|to"],
numbformat(df_formality[, "prop_formal"], digits))
## Set up widths and colors
df_formality[, "prop_wc"] <- df_formality[, "wc"]/sum(df_formality[, "wc"])
df_formality[, "width"] <- edge.constant*df_formality[, "prop_wc"]
tcols <- df_formality[, c("from", "to", "color"), drop=FALSE]
widths <- df_formality[, c("from", "to", "width"), drop=FALSE]
widths[, "width"] <- ceiling(widths[, "width"])
ekey <- paste2(edge_capture(theplot), sep=qsep)
ckey <- colpaste2df(tcols, 1:2, sep = qsep, keep.orig=FALSE)[, 2:1]
wkey <- colpaste2df(widths, 1:2, sep = qsep, keep.orig=FALSE)[, 2:1]
E(theplot)$width <- NAer(ekey %l% wkey, 1)
## add class info
class(theplot) <- c("Network", class(theplot))
attributes(theplot)[["title"]] <- title
attributes(theplot)[["legend.gradient"]] <- cols
attributes(theplot)[["network.type"]] <- "formality"
attributes(theplot)[["legend.label"]] <- c("Contextual", "Formal")
attributes(theplot)[["n.color.breaks"]] <- max.color.breaks
attributes(theplot)[["color.locs"]] <- as.numeric(cuts)
theplot
}
form_fun2 <- function (z) {
out <- data.frame(formal = rowSums(z[, c("noun", "articles",
"adj", "prep")]), contextual = rowSums(z[, c("pronoun",
"verb", "adverb", "interj")]))
out[, "total"] <- rowSums(out)
out[, paste0("prop_", names(out)[1:2])] <- out[, 1:2]/out[, 3]
data.frame(`from|to` = z[, 1], wc = z[, "wrd.cnt"], out, check.names=FALSE)
}
#' \code{cumulative.formality} - Generate formality over time (duration in
#' sentences).
#' @rdname cumulative
#' @export
#' @method cumulative formality
cumulative.formality <- function(x, ...){
v <- x[["POSfreq"]]
colnms1 <- colnames(scores(x))[1]
ord <- levels(scores(x)[, 1])
nas <- which(is.na(x[["text"]]))
if(!identical(nas, integer(0))) {
x[["POSfreq"]][nas,] <- 0
x[["POSfreq"]][nas, 1] <- 1
}
## Count the articles per row
articles <- unlist(lapply(x[["text"]], function(x){
if(identical(x, character(0)) ) return(0)
sum(article(x))
}))
if (!is.null(v$DT)) {
PD <- v$DT-articles
} else {
PD <- rep(0, nrow(v))
}
## tally parts of speech for formality stat
z <- data.frame(
noun = rowSums(v[, names(v) %in% c("NN", "NNS", "NNP", "NNPS",
"POS", "JI", "JK"), drop=FALSE]),
adj = rowSums(cbind(v[, names(v) %in% c("CD", "JJ", "JJR", "JJS",
"JI", "JK"), drop=FALSE], PD)),
prep = rowSums(v[, names(v) %in% c("IN", "RP", "TO", "JI", "JK"),
drop=FALSE]),
articles = articles,
pronoun = rowSums(v[, names(v) %in% c("PRP", "PRP$", "PRP.", "WDT",
"WP", "WP$", "WP.", "JI", "JK", "EX"), drop=FALSE]),
verb = rowSums(v[, names(v) %in% c("MD", "VB", "VBD", "VBG",
"VBN", "VBP", "VBZ", "JI", "JK"), drop=FALSE]),
adverb = rowSums(v[, names(v) %in% c("RB", "RBR", "RBS", "WRB",
"JI", "JK"), drop=FALSE]),
interj = rowSums(v[, names(v) %in% c("UH", "JI", "JK"), drop=FALSE]))
z_form <- v[, 1, drop=FALSE]
z_form[, "formal"] <- rowSums(z[, c("noun", "articles", "adj", "prep")])
z_form[, "contextual"] <- rowSums(z[, c("pronoun", "verb", "adverb", "interj")])
n.obs <- nrow(z_form)
out <- list(cumulative_formality = sapply(1:n.obs, function(i) {
x <- colSums(z_form[1:i, ], na.rm=TRUE)
x[paste0("prop_", names(x)[2:3])] <- x[2:3]/x[1]
unname(50*(1 +(x["prop_formal"] - x["prop_contextual"])/x["wrd.cnt"]))
}), greater_than_300 = which(cumsum(z_form[, 1]) >= 300)[1])
class(out) <- "cumulative_formality"
out
}
#' \code{cumulative.pos} - Generate formality over time (duration in
#' sentences).
#' @rdname cumulative
#' @export
#' @method cumulative pos
cumulative.pos <- cumulative.formality
#' \code{cumulative.pos_by} - Generate formality over time (duration in
#' sentences).
#' @rdname cumulative
#' @export
#' @method cumulative pos_by
cumulative.pos_by <- cumulative.formality
#' Plots a cumulative_formality Object
#'
#' Plots a cumulative_formality object.
#'
#' @param x The cumulative_formality object.
#' @param \ldots ignored
#' @method plot cumulative_formality
#' @export
plot.cumulative_formality <- function(x, ...){
g300 <- x[[2]]
len <- length(x[[1]])
form_range <- range(x[[1]][g300:len])
cumformality <- data.frame(cum_mean = x[[1]], Time = 1:len, drop=TRUE)
cumformality <- cumformality[g300:length(x[[1]]), ]
note <- sprintf("*Note: After 300 Words (Begins With Statement %s)", g300)
note_coord <- c(x[[2]], x[[1]][g300] + (diff(form_range) * .01))
ggplot2::ggplot() + ggplot2::theme_bw() +
ggplot2::geom_smooth(data = cumformality, ggplot2::aes_string(y="cum_mean",
x = "Time")) +
ggplot2::geom_hline(y=mean(x[[1]]), color="grey30", size=1, alpha=.3, linetype=2) +
ggplot2::annotate("text", x = len/2, y = mean(x[[1]]), color="grey30",
label = "Average Formality", vjust = .3, size=4) +
ggplot2::geom_line(data = cumformality, ggplot2::aes_string(y="cum_mean",
x = "Time"), size=1) +
ggplot2::ylab("Cumulative Average Formality") +
ggplot2::xlab("Duration") +
ggplot2::scale_x_continuous(expand = c(.01,.01)) +
ggplot2::annotate("text", x = note_coord[1], y = note_coord[2],
color="grey40", label = note, size=2.5, fontface = 3, hjust=0, alpha=.4)
}
#' Prints a cumulative_formality Object
#'
#' Prints a cumulative_formality object.
#'
#' @param x The cumulative_formality object.
#' @param \ldots ignored
#' @method print cumulative_formality
#' @export
print.cumulative_formality <- function(x, ...) {
print(plot.cumulative_formality(x, ...))
}
#' \code{cumulative.animated_formality} - Generate animated formality over time
#' (duration in sentences).
#' @rdname cumulative
#' @export
#' @method cumulative animated_formality
cumulative.animated_formality <- function(x, ...) {
if(attributes(x)[["network"]]) {
stop("Output must be from an `Animate.formality` when `network = FALSE`")
}
out <- c(NA, unlist(lapply(x, grab_ave_formality), use.names = FALSE))
out[1] <- out[2]
avepol <- utils::tail(out, 1)
len <- length(out)
output <- data.frame(cum_mean = out, Time = 1:len, drop=TRUE)
class(output) <- c("cumulative_animated_formality", class(output))
attributes(output)[["length"]] <- len
attributes(output)[["average.formality"]] <- avepol
attributes(output)[["range"]] <- x[[1]][["scales"]][["scales"]][[1]][["limits"]]
output
}
#' Plots a cumulative_animated_formality Object
#'
#' Plots a cumulative_animated_formality object.
#'
#' @param x The cumulative_animated_formality object.
#' @param \ldots ignored
#' @method plot cumulative_animated_formality
#' @export
plot.cumulative_animated_formality <- function(x, ...){
output <- lapply(1:nrow(x), function(i) {
ggplot2::ggplot() + ggplot2::theme_bw() +
ggplot2::geom_line(data = x[1:i, ,drop=FALSE], ggplot2::aes_string(y="cum_mean",
x = "Time"), size=1) +
ggplot2::geom_hline(yintercept=0, size=1.5, color="grey50", linetype="dashed") +
ggplot2::geom_hline(y=attributes(x)[["average.formality"]],
color="grey30", size=1, alpha=.3) +
ggplot2::ylab("Cumulative Average formality") +
ggplot2::xlab("Duration") +
ggplot2::scale_x_continuous(expand = c(0, 0),
limits = c(0, attributes(x)[["length"]])) +
ggplot2::ylim(range(x[["cum_mean"]])) +
ggplot2::annotate("point", y = x[i, "cum_mean"],
x =x[i, "Time"], colour = "red", size = 1.5)
})
output[[1]][["layers"]][[4]][["geom_params"]][["colour"]] <- NA
output[[length(output)]] <- output[[length(output)]] +
ggplot2::geom_smooth(data = x,
ggplot2::aes_string(y="cum_mean", x = "Time"))
output
}
#' Prints a cumulative_animated_formality Object
#'
#' Prints a cumulative_animated_formality object.
#'
#' @param x The cumulative_animated_formality object.
#' @param \ldots ignored
#' @method print cumulative_animated_formality
#' @export
print.cumulative_animated_formality <- function(x, ...) {
print(plot.cumulative_animated_formality(x, ...))
}
grab_ave_formality <- function(x, left="Total Discourse Formality:",
right = "Current Speaker:") {
genXtract(x[["labels"]][["title"]], left, right) %>%
Trim() %>%
as.numeric()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.