Nothing
# rabhit package documentation and import directives
#' The RAbHIT package
#'
#' The \code{rabhit} package provides a robust novel method for determining
#' antibody heavy and light chain haplotypes by adapting a Bayesian framework.
#' The key functions in \code{rabhit}, broken down by topic, are
#' described below.
#'
#'
#' @section Haplotype and deletions inference:
#' \code{rabhit} provides tools to infer haplotypes based on given anchor genes,
#' deletion detection based on relative gene usage, pooling v genes, and a single anchor gene.
#'
#' \itemize{
#' \item \link{createFullHaplotype}: Haplotypes inference and single chromosome deletions based on an anchor gene.
#' \item \link{deletionsByVpooled}: Single chromosomal deletion detection by pooling V genes.
#' \item \link{deletionsByBinom}: Double chromosomal deletion detection by relative gene usage.
#' \item \link{geneUsage}: Relative gene usage.
#' \item \link{nonReliableVGenes}: Non reliable gene assignment detection.
#' }
#'
#' @section Haplotype and deletions visualization:
#' Functions for visualization of the inferred haplotypes and deletions
#'
#' \itemize{
#' \item \link{plotHaplotype}: Haplotype inference map.
#' \item \link{deletionHeatmap}: Single chromosome deletions heatmap.
#' \item \link{hapHeatmap}: Chromosome comparison of multiple samples.
#' \item \link{hapDendo}: Hierarchical clustering of multiple haplotypes based on Jaccard distance.
#' \item \link{plotDeletionsByVpooled}: V pooled based single chromosome deletions heatmap.
#' \item \link{plotDeletionsByBinom}: Double chromosome deletions heatmap.
#' }
#'
#' @name rabhit
#' @docType package
#' @references
#' \enumerate{
#' \item Gidoni, M., Snir, O., Peres, A., Polak, P., Lindeman, I., Mikocziova, I., . . . Yaari, G. (2019).
#' Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping.
#' Nature Communications, 10(1). doi:10.1038/s41467-019-08489-3
#' }
#'
#' @import ggplot2
#' @import methods
#' @import utils
#' @import dendextend
#' @importFrom plotly ggplotly subplot
#' @importFrom graphics grid image axis points text par plot
#' @importFrom cowplot get_legend plot_grid ggdraw draw_label background_grid
#' @importFrom gridExtra arrangeGrob
#' @importFrom dplyr do n desc funs %>% distinct
#' as_data_frame data_frame
#' bind_cols bind_rows combine rowwise slice
#' filter select arrange
#' group_by ungroup
#' mutate summarize
#' mutate_at summarize_at count
#' rename transmute pull ungroup row_number
#' @importFrom data.table := rbindlist data.table .N setDT CJ setorderv setkey .SD
#' @importFrom reshape2 melt
#' @importFrom gtools ddirichlet
#' @importFrom stats hclust as.dendrogram as.dist binom.test p.adjust setNames weighted.mean
#' @importFrom ggdendro dendro_data segment
#' @importFrom htmlwidgets saveWidget
#' @importFrom gtable gtable_filter
#' @importFrom grDevices dev.off pdf recordPlot dev.control
#' @importFrom alakazam getGene
#' @importFrom rlang .data
#' @importFrom tigger sortAlleles
#' @importFrom RColorBrewer brewer.pal
#' @importFrom tidyr separate_rows
#' @importFrom stringi stri_detect_regex stri_detect_fixed
#' @importFrom grid gpar textGrob
#' @importFrom splitstackshape cSplit
#' @importFrom fastmatch %fin%
#' @importFrom plyr rbind.fill
#' @importFrom readr read_tsv cols
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.