step_ica | R Documentation |
step_ica()
creates a specification of a recipe step that will convert
numeric data into one or more independent components.
step_ica(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(method = "C"),
seed = sample.int(10000, 5),
res = NULL,
columns = NULL,
prefix = "IC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("ica")
)
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. See |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
num_comp |
The number of components to retain as new predictors.
If |
options |
A list of options to
|
seed |
A single integer to set the random number stream prior to running ICA. |
res |
The |
columns |
A character string of the selected variable names. This field
is a placeholder and will be populated once |
prefix |
A character string for the prefix of the resulting new variables. See notes below. |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Independent component analysis (ICA) is a transformation of a group of variables that produces a new set of artificial features or components. ICA assumes that the variables are mixtures of a set of distinct, non-Gaussian signals and attempts to transform the data to isolate these signals. Like PCA, the components are statistically independent from one another. This means that they can be used to combat large inter-variables correlations in a data set. Also like PCA, it is advisable to center and scale the variables prior to running ICA.
This package produces components using the "FastICA" methodology (see reference below). This step requires the dimRed and fastICA packages. If not installed, the step will stop with a note about installing these packages.
The argument num_comp
controls the number of components that will be retained
(the original variables that are used to derive the components are removed from
the data). The new components will have names that begin with prefix
and a
sequence of numbers. The variable names are padded with zeros. For example, if
num_comp < 10
, their names will be IC1
- IC9
. If num_comp = 101
,
the names would be IC1
- IC101
.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
When you tidy()
this step, a tibble is returned with
columns terms
, component
, value
, and id
:
character, the selectors or variables selected
character, name of component
numeric, the loading
character, id of this step
This step has 1 tuning parameters:
num_comp
: # Components (type: integer, default: 5)
The underlying operation does not allow for case weights.
Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430.
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_isomap()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
# from fastICA::fastICA
set.seed(131)
S <- matrix(runif(400), 200, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- as.data.frame(S %*% A)
tr <- X[1:100, ]
te <- X[101:200, ]
rec <- recipe(~., data = tr)
ica_trans <- step_center(rec, V1, V2)
ica_trans <- step_scale(ica_trans, V1, V2)
ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)
ica_estimates <- prep(ica_trans, training = tr)
ica_data <- bake(ica_estimates, te)
plot(te$V1, te$V2)
plot(ica_data$IC1, ica_data$IC2)
tidy(ica_trans, number = 3)
tidy(ica_estimates, number = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.