step_isomap | R Documentation |
step_isomap()
creates a specification of a recipe step that uses
multidimensional scaling to convert numeric data into one or more new
dimensions.
step_isomap(
recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,
columns = NULL,
prefix = "Isomap",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("isomap")
)
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. See |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
num_terms |
The number of isomap dimensions to retain as new
predictors. If |
neighbors |
The number of neighbors. |
options |
A list of options to |
res |
The |
columns |
A character string of the selected variable names. This field
is a placeholder and will be populated once |
prefix |
A character string for the prefix of the resulting new variables. See notes below. |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Isomap is a form of multidimensional scaling (MDS). MDS methods try to find a reduced set of dimensions such that the geometric distances between the original data points are preserved. This version of MDS uses nearest neighbors in the data as a method for increasing the fidelity of the new dimensions to the original data values.
This step requires the dimRed, RSpectra, igraph, and RANN packages. If not installed, the step will stop with a note about installing these packages.
It is advisable to center and scale the variables prior to
running Isomap (step_center
and step_scale
can be
used for this purpose).
The argument num_terms
controls the number of components that
will be retained (the original variables that are used to derive
the components are removed from the data). The new components
will have names that begin with prefix
and a sequence of
numbers. The variable names are padded with zeros. For example,
if num_terms < 10
, their names will be Isomap1
-
Isomap9
. If num_terms = 101
, the names would be
Isomap001
- Isomap101
.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
When you tidy()
this step, a tibble is returned with
columns terms
, and id
:
character, the selectors or variables selected
character, id of this step
This step has 2 tuning parameters:
num_terms
: # Model Terms (type: integer, default: 5)
neighbors
: # Nearest Neighbors (type: integer, default: 50)
The underlying operation does not allow for case weights.
De Silva, V., and Tenenbaum, J. B. (2003). Global versus local methods in nonlinear dimensionality reduction. Advances in Neural Information Processing Systems. 721-728.
dimRed, a framework for dimensionality reduction, https://github.com/gdkrmr
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_ica()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
im_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), neighbors = 100, num_terms = 2)
im_estimates <- prep(im_trans, training = biomass_tr)
im_te <- bake(im_estimates, biomass_te)
rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
plot(im_te$Isomap1, im_te$Isomap2,
xlim = rng, ylim = rng
)
tidy(im_trans, number = 3)
tidy(im_estimates, number = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.