step_other | R Documentation |
step_other()
creates a specification of a recipe step that will
potentially pool infrequently occurring values into an "other"
category.
step_other(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.05,
other = "other",
objects = NULL,
skip = FALSE,
id = rand_id("other")
)
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. See |
role |
Not used by this step since no new variables are created. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
threshold |
A numeric value between 0 and 1, or an integer greater or
equal to one. If less than one, then factor levels with a rate of
occurrence in the training set below |
other |
A single character value for the "other" category. |
objects |
A list of objects that contain the information
to pool infrequent levels that is determined by
|
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
The overall proportion (or total counts) of the categories are
computed. The "other" category is used in place of any categorical levels
whose individual proportion (or frequency) in the training set is less than
threshold
.
If no pooling is done the data are unmodified (although character data may
be changed to factors based on the value of strings_as_factors
in
prep()
). Otherwise, a factor is always returned with
different factor levels.
If threshold
is less than the largest category proportion, all levels
except for the most frequent are collapsed to the other
level.
If the retained categories include the value of other
, an error is
thrown. If other
is in the list of discarded levels, no error
occurs.
If no pooling is done, novel factor levels are converted to missing. If pooling is needed, they will be placed into the other category.
When data to be processed contains novel levels (i.e., not contained in the training set), the other category is assigned.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
When you tidy()
this step, a tibble is returned with
columns terms
, retained
, and id
:
character, the selectors or variables selected
character, factor levels not pulled into "other"
character, id of this step
This step has 1 tuning parameters:
threshold
: Threshold (type: double, default: 0.05)
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in case_weights and the examples on
tidymodels.org
.
dummy_names()
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_date()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_regex()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
data(Sacramento, package = "modeldata")
set.seed(19)
in_train <- sample(1:nrow(Sacramento), size = 800)
sacr_tr <- Sacramento[in_train, ]
sacr_te <- Sacramento[-in_train, ]
rec <- recipe(~ city + zip, data = sacr_tr)
rec <- rec %>%
step_other(city, zip, threshold = .1, other = "other values")
rec <- prep(rec, training = sacr_tr)
collapsed <- bake(rec, sacr_te)
table(sacr_te$city, collapsed$city, useNA = "always")
tidy(rec, number = 1)
# novel levels are also "othered"
tahiti <- Sacramento[1, ]
tahiti$zip <- "a magical place"
bake(rec, tahiti)
# threshold as a frequency
rec <- recipe(~ city + zip, data = sacr_tr)
rec <- rec %>%
step_other(city, zip, threshold = 2000, other = "other values")
rec <- prep(rec, training = sacr_tr)
tidy(rec, number = 1)
# compare it to
# sacr_tr %>% count(city, sort = TRUE) %>% top_n(4)
# sacr_tr %>% count(zip, sort = TRUE) %>% top_n(3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.