Nothing
#' RFM table (transaction data)
#'
#' Recency, frequency, monetary and RFM score.
#'
#' @param data A \code{data.frame} or \code{tibble}.
#' @param customer_id Unique id of the customer.
#' @param order_date Date of the transaction.
#' @param revenue Revenue from the customer.
#' @param analysis_date Date of analysis.
#' @param recency_bins Number of bins for recency or custom threshold.
#' @param frequency_bins Number of bins for frequency or custom threshold.
#' @param monetary_bins Number of bins for monetary or custom threshold.
#' @param ... Other arguments.
#'
#' @return \code{rfm_table_order} returns a list with the following:
#'
#' \item{rfm}{RFM table.}
#' \item{analysis_date}{Date of analysis.}
#' \item{frequency_bins}{Number of bins used for frequency score.}
#' \item{recency_bins}{Number of bins used for recency score.}
#' \item{monetary_bins}{Number of bins used for monetary score.}
#' \item{threshold}{thresholds used for generating RFM scores.}
#'
#' @examples
#' analysis_date <- as.Date("2006-12-31")
#' rfm_table_order(
#' rfm_data_orders, customer_id, order_date, revenue,
#' analysis_date
#' )
#'
#' # access rfm table
#' result <- rfm_table_order(
#' rfm_data_orders, customer_id, order_date,
#' revenue, analysis_date
#' )
#' result$rfm
#'
#' # using custom threshold
#' rfm_table_order(rfm_data_orders, customer_id, order_date, revenue,
#' analysis_date,
#' recency_bins = c(115, 181, 297, 482), frequency_bins = c(4, 5, 6, 8),
#' monetary_bins = c(256, 382, 506, 666)
#' )
#'
#' @export
#'
rfm_table_order <- function(data = NULL, customer_id = NULL, order_date = NULL,
revenue = NULL, analysis_date = NULL,
recency_bins = 5, frequency_bins = 5,
monetary_bins = 5, ...) UseMethod("rfm_table_order")
#' @importFrom dplyr distinct
#' @export
#'
rfm_table_order.default <- function(data = NULL, customer_id = NULL,
order_date = NULL, revenue = NULL,
analysis_date = NULL, recency_bins = 5,
frequency_bins = 5, monetary_bins = 5, ...) {
result <- rfm_prep_table_data(
data, {{ customer_id }}, {{ order_date }},
{{ revenue }}, analysis_date
)
other_cols <-
data %>%
select(!c({{ order_date }}, {{ revenue }})) %>%
distinct()
out <- rfm_prep_bins(
result, recency_bins, frequency_bins, monetary_bins,
analysis_date, other_cols
)
class(out) <- c("rfm_table_order", "tibble", "data.frame")
return(out)
}
#' @export
#'
print.rfm_table_order <- function(x, ...) {
print(x$rfm)
}
#' @importFrom dplyr select group_by summarise n mutate
#' @importFrom magrittr %>% %<>% set_names
rfm_prep_table_data <- function(data, customer_id, order_date, revenue,
analysis_date) {
data %>%
select({{ customer_id }}, {{ order_date }}, {{ revenue }}) %>%
group_by({{ customer_id }}) %>%
summarise(
date_most_recent = max({{ order_date }}),
amount = sum({{ revenue }}),
transaction_count = n()
) %>%
mutate(recency_days = as.numeric(analysis_date - date_most_recent,
units = "days"
)) %>%
select(
{{ customer_id }}, date_most_recent, recency_days, transaction_count,
amount
) %>%
set_names(c(
"customer_id", "date_most_recent", "recency_days",
"transaction_count", "amount"
))
}
#' @importFrom rlang int
#' @importFrom dplyr left_join join_by
rfm_prep_bins <- function(result, recency_bins, frequency_bins, monetary_bins,
analysis_date, data) {
result$recency_score <- NA
result$frequency_score <- NA
result$monetary_score <- NA
if (length(recency_bins) == 1) {
rscore <- rev(seq_len(recency_bins))
bins_recency <- bins(result, "recency_days", recency_bins)
} else {
rscore <- rev(seq_len((length(recency_bins) + 1)))
bins_recency <- recency_bins
}
lower_recency <- bins_lower(result, "recency_days", bins_recency)
upper_recency <- bins_upper(result, "recency_days", bins_recency)
rscore_len <- length(rscore)
for (i in seq_len(rscore_len)) {
result$recency_score[result$recency_days >= lower_recency[i] &
result$recency_days < upper_recency[i]] <- rscore[i]
}
if (length(frequency_bins) == 1) {
fscore <- rev(seq_len(frequency_bins))
bins_frequency <- bins(result, "transaction_count", frequency_bins)
} else {
fscore <- rev(seq_len((length(frequency_bins) + 1)))
bins_frequency <- frequency_bins
}
lower_frequency <- bins_lower(result, "transaction_count", bins_frequency)
upper_frequency <- bins_upper(result, "transaction_count", bins_frequency)
fscore_len <- length(fscore)
for (i in seq_len(fscore_len)) {
result$frequency_score[result$transaction_count >= lower_frequency[i] &
result$transaction_count < upper_frequency[i]] <- i
}
if (length(monetary_bins) == 1) {
mscore <- rev(seq_len(monetary_bins))
bins_monetary <- bins(result, "amount", monetary_bins)
} else {
mscore <- rev(seq_len((length(monetary_bins) + 1)))
bins_monetary <- monetary_bins
}
lower_monetary <- bins_lower(result, "amount", bins_monetary)
upper_monetary <- bins_upper(result, "amount", bins_monetary)
mscore_len <- length(mscore)
for (i in seq_len(mscore_len)) {
result$monetary_score[result$amount >= lower_monetary[i] &
result$amount < upper_monetary[i]] <- i
}
result %<>%
mutate(
rfm_score = recency_score * 100 + frequency_score * 10 + monetary_score
) %>%
select(
customer_id, recency_days, transaction_count, amount,
recency_score, frequency_score, monetary_score, rfm_score
)
result$transaction_count <- int(result$transaction_count)
result <- left_join(result, data, by = join_by(customer_id))
threshold <- data.frame(
recency_lower = lower_recency,
recency_upper = upper_recency,
frequency_lower = lower_frequency,
frequency_upper = upper_frequency,
monetary_lower = lower_monetary,
monetary_upper = upper_monetary
)
list(
rfm = result,
analysis_date = analysis_date,
frequency_bins = frequency_bins,
recency_bins = recency_bins,
monetary_bins = monetary_bins,
threshold = threshold
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.