Nothing
## Test the exact fit property of CovMcd
doexactfit <- function(){
exact <-function(seed=1234){
set.seed(seed)
n1 <- 45
p <- 2
x1 <- matrix(rnorm(p*n1),nrow=n1, ncol=p)
x1[,p] <- x1[,p] + 3
n2 <- 55
m1 <- 0
m2 <- 3
x2 <- cbind(rnorm(n2),rep(m2,n2))
x<-rbind(x1,x2)
colnames(x) <- c("X1","X2")
x
}
print(CovMcd(exact()))
}
dodata <- function(nrep=1, time=FALSE, short=FALSE, full=TRUE, method = c("FASTMCD","MASS", "deterministic", "exact", "MRCD")){
##@bdescr
## Test the function covMcd() on the literature datasets:
##
## Call CovMcd() for all regression datasets available in rrcov and print:
## - execution time (if time == TRUE)
## - objective fucntion
## - best subsample found (if short == false)
## - outliers identified (with cutoff 0.975) (if short == false)
## - estimated center and covarinance matrix if full == TRUE)
##
##@edescr
##
##@in nrep : [integer] number of repetitions to use for estimating the
## (average) execution time
##@in time : [boolean] whether to evaluate the execution time
##@in short : [boolean] whether to do short output (i.e. only the
## objective function value). If short == FALSE,
## the best subsample and the identified outliers are
## printed. See also the parameter full below
##@in full : [boolean] whether to print the estimated cente and covariance matrix
##@in method : [character] select a method: one of (FASTMCD, MASS)
doest <- function(x, xname, nrep=1){
n <- dim(x)[1]
p <- dim(x)[2]
if(method == "MASS"){
mcd<-cov.mcd(x)
quan <- as.integer(floor((n + p + 1)/2)) #default: floor((n+p+1)/2)
}
else{
mcd <- if(method=="deterministic") CovMcd(x, nsamp="deterministic", trace=FALSE)
else if(method=="exact") CovMcd(x, nsamp="exact", trace=FALSE)
else if(method=="MRCD") CovMrcd(x, trace=FALSE)
else CovMcd(x, trace=FALSE)
quan <- as.integer(mcd@quan)
}
crit <- mcd@crit
if(time){
xtime <- system.time(dorep(x, nrep, method))[1]/nrep
xres <- sprintf("%3d %3d %3d %12.6f %10.3f\n", dim(x)[1], dim(x)[2], quan, crit, xtime)
}
else{
xres <- sprintf("%3d %3d %3d %12.6f\n", dim(x)[1], dim(x)[2], quan, crit)
}
lpad<-lname-nchar(xname)
cat(pad.right(xname,lpad), xres)
if(!short){
cat("Best subsample: \n")
if(length(mcd@best) > 150)
cat("Too long... \n")
else
print(mcd@best)
ibad <- which(mcd@wt==0)
names(ibad) <- NULL
nbad <- length(ibad)
cat("Outliers: ",nbad,"\n")
if(nbad > 0 & nbad < 150)
print(ibad)
else
cat("Too many to print ... \n")
if(full){
cat("-------------\n")
show(mcd)
}
cat("--------------------------------------------------------\n")
}
}
options(digits = 5)
set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
lname <- 20
## VT::15.09.2013 - this will render the output independent
## from the version of the package
suppressPackageStartupMessages(library(rrcov))
method <- match.arg(method)
if(method == "MASS")
library(MASS)
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
data(fish)
data(pottery)
data(rice)
data(un86)
data(wages)
tmp <- sys.call()
cat("\nCall: ", deparse(substitute(tmp)),"\n")
cat("Data Set n p Half LOG(obj) Time\n")
cat("========================================================\n")
if(method=="exact")
{
## only small data sets
doest(heart[, 1:2], data(heart), nrep)
doest(starsCYG, data(starsCYG), nrep)
doest(data.matrix(subset(phosphor, select = -plant)), data(phosphor), nrep)
doest(data.matrix(subset(coleman, select = -Y)), data(coleman), nrep)
doest(data.matrix(subset(salinity, select = -Y)), data(salinity), nrep)
doest(data.matrix(subset(wood, select = -y)), data(wood), nrep)
doest(brain, "Animals", nrep)
doest(lactic, data(lactic), nrep)
doest(pension, data(pension), nrep)
doest(data.matrix(subset(vaso, select = -Y)), data(vaso), nrep)
doest(stack.x, data(stackloss), nrep)
doest(pilot, data(pilot), nrep)
} else
{
doest(heart[, 1:2], data(heart), nrep)
doest(starsCYG, data(starsCYG), nrep)
doest(data.matrix(subset(phosphor, select = -plant)), data(phosphor), nrep)
doest(stack.x, data(stackloss), nrep)
doest(data.matrix(subset(coleman, select = -Y)), data(coleman), nrep)
doest(data.matrix(subset(salinity, select = -Y)), data(salinity), nrep)
doest(data.matrix(subset(wood, select = -y)), data(wood), nrep)
doest(data.matrix(subset(hbk, select = -Y)),data(hbk), nrep)
doest(brain, "Animals", nrep)
## doest(milk, data(milk), nrep) # difference between 386 and x64
doest(bushfire, data(bushfire), nrep)
doest(lactic, data(lactic), nrep)
doest(pension, data(pension), nrep)
## doest(pilot, data(pilot), nrep) # difference between 386 and x64
if(method != "MRCD") # these two are quite slow for MRCD, especially the second one
{
doest(radarImage, data(radarImage), nrep)
doest(NOxEmissions, data(NOxEmissions), nrep)
}
doest(data.matrix(subset(vaso, select = -Y)), data(vaso), nrep)
doest(data.matrix(subset(wagnerGrowth, select = -Period)), data(wagnerGrowth), nrep)
doest(data.matrix(subset(fish, select = -Species)), data(fish), nrep)
doest(data.matrix(subset(pottery, select = -origin)), data(pottery), nrep)
doest(rice, data(rice), nrep)
doest(un86, data(un86), nrep)
doest(wages, data(wages), nrep)
## from package 'datasets'
doest(airquality[,1:4], data(airquality), nrep)
doest(attitude, data(attitude), nrep)
doest(attenu, data(attenu), nrep)
doest(USJudgeRatings, data(USJudgeRatings), nrep)
doest(USArrests, data(USArrests), nrep)
doest(longley, data(longley), nrep)
doest(Loblolly, data(Loblolly), nrep)
doest(quakes[,1:4], data(quakes), nrep)
}
cat("========================================================\n")
}
dogen <- function(nrep=1, eps=0.49, method=c("FASTMCD", "MASS")){
doest <- function(x, nrep=1){
gc()
xtime <- system.time(dorep(x, nrep, method))[1]/nrep
cat(sprintf("%6d %3d %10.2f\n", dim(x)[1], dim(x)[2], xtime))
xtime
}
set.seed(1234)
## VT::15.09.2013 - this will render the output independent
## from the version of the package
suppressPackageStartupMessages(library(rrcov))
library(MASS)
method <- match.arg(method)
ap <- c(2, 5, 10, 20, 30)
an <- c(100, 500, 1000, 10000, 50000)
tottime <- 0
cat(" n p Time\n")
cat("=====================\n")
for(i in 1:length(an)) {
for(j in 1:length(ap)) {
n <- an[i]
p <- ap[j]
if(5*p <= n){
xx <- gendata(n, p, eps)
X <- xx$X
tottime <- tottime + doest(X, nrep)
}
}
}
cat("=====================\n")
cat("Total time: ", tottime*nrep, "\n")
}
docheck <- function(n, p, eps){
xx <- gendata(n,p,eps)
mcd <- CovMcd(xx$X)
check(mcd, xx$xind)
}
check <- function(mcd, xind){
## check if mcd is robust w.r.t xind, i.e. check how many of xind
## did not get zero weight
mymatch <- xind %in% which(mcd@wt == 0)
length(xind) - length(which(mymatch))
}
dorep <- function(x, nrep=1, method=c("FASTMCD","MASS", "deterministic", "exact", "MRCD")){
method <- match.arg(method)
for(i in 1:nrep)
if(method == "MASS")
cov.mcd(x)
else
{
if(method=="deterministic") CovMcd(x, nsamp="deterministic", trace=FALSE)
else if(method=="exact") CovMcd(x, nsamp="exact", trace=FALSE)
else if(method=="MRCD") CovMrcd(x, trace=FALSE)
else CovMcd(x, trace=FALSE)
}
}
#### gendata() ####
# Generates a location contaminated multivariate
# normal sample of n observations in p dimensions
# (1-eps)*Np(0,Ip) + eps*Np(m,Ip)
# where
# m = (b,b,...,b)
# Defaults: eps=0 and b=10
#
gendata <- function(n,p,eps=0,b=10){
if(missing(n) || missing(p))
stop("Please specify (n,p)")
if(eps < 0 || eps >= 0.5)
stop(message="eps must be in [0,0.5)")
X <- mvrnorm(n,rep(0,p),diag(1,nrow=p,ncol=p))
nbad <- as.integer(eps * n)
if(nbad > 0){
Xbad <- mvrnorm(nbad,rep(b,p),diag(1,nrow=p,ncol=p))
xind <- sample(n,nbad)
X[xind,] <- Xbad
}
list(X=X, xind=xind)
}
pad.right <- function(z, pads)
{
### Pads spaces to right of text
padding <- paste(rep(" ", pads), collapse = "")
paste(z, padding, sep = "")
}
whatis<-function(x){
if(is.data.frame(x))
cat("Type: data.frame\n")
else if(is.matrix(x))
cat("Type: matrix\n")
else if(is.vector(x))
cat("Type: vector\n")
else
cat("Type: don't know\n")
}
## VT::15.09.2013 - this will render the output independent
## from the version of the package
suppressPackageStartupMessages(library(rrcov))
dodata()
dodata(method="deterministic")
dodata(method="exact")
dodata(method="MRCD")
##doexactfit()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.