R/posterior_vs_prior.R

Defines functions stack_estimates posterior_vs_prior.stanreg posterior_vs_prior

Documented in posterior_vs_prior posterior_vs_prior.stanreg

#' Juxtapose prior and posterior
#' 
#' Plot medians and central intervals comparing parameter draws from the prior 
#' and posterior distributions. If the plotted priors look different than the 
#' priors you think you specified it is likely either because of internal 
#' rescaling or the use of the \code{QR} argument (see the documentation for the
#' \code{\link[=prior_summary.stanreg]{prior_summary}} method for details on 
#' these special cases).
#' 
#' @export
#' @templateVar stanregArg object
#' @template args-stanreg-object
#' @inheritParams summary.stanreg
#' @param group_by_parameter Should estimates be grouped together by parameter
#'   (\code{TRUE}) or by posterior and prior (\code{FALSE}, the default)?
#' @param color_by How should the estimates be colored? Use \code{"parameter"} 
#'   to color by parameter name, \code{"vs"} to color the prior one color and 
#'   the posterior another, and \code{"none"} to use no color. Except when 
#'   \code{color_by="none"}, a variable is mapped to the color 
#'   \code{\link[ggplot2]{aes}}thetic and it is therefore also possible to
#'   change the default colors by adding one of the various discrete color
#'   scales available in \code{ggplot2} 
#'   (\code{\link[ggplot2]{scale_color_manual}}, 
#'   \code{\link[ggplot2]{scale_color_brewer}}, etc.). See Examples.
#' @param prob A number \eqn{p \in (0,1)}{p (0 < p < 1)} indicating the desired 
#'   posterior probability mass to include in the (central posterior) interval 
#'   estimates displayed in the plot. The default is \eqn{0.9}.
#' @param facet_args A named list of arguments passed to
#'   \code{\link[ggplot2]{facet_wrap}} (other than the \code{facets} argument),
#'   e.g., \code{nrow} or \code{ncol} to change the layout, \code{scales} to 
#'   allow axis scales to vary across facets, etc. See Examples.
#' @param ... The S3 generic uses \code{...} to pass arguments to any defined 
#'   methods. For the method for stanreg objects, \code{...} is for arguments
#'   (other than \code{color}) passed to \code{\link[ggplot2]{geom_pointrange}}
#'   to control the appearance of the plotted intervals.
#'   
#' @return A ggplot object that can be further customized using the 
#'   \pkg{ggplot2} package.
#'   
#' @template reference-bayesvis
#' 
#' @examples
#' 
#' \dontrun{
#' if (!exists("example_model")) example(example_model)
#' # display non-varying (i.e. not group-level) coefficients
#' posterior_vs_prior(example_model, pars = "beta")
#' 
#' # show group-level (varying) parameters and group by parameter
#' posterior_vs_prior(example_model, pars = "varying",
#'                    group_by_parameter = TRUE, color_by = "vs")
#'
#' # group by parameter and allow axis scales to vary across facets
#' posterior_vs_prior(example_model, regex_pars = "period",
#'                    group_by_parameter = TRUE, color_by = "none",
#'                    facet_args = list(scales = "free"))
#' 
#' # assign to object and customize with functions from ggplot2
#' (gg <- posterior_vs_prior(example_model, pars = c("beta", "varying"), prob = 0.8))
#' 
#' gg + 
#'  ggplot2::geom_hline(yintercept = 0, size = 0.3, linetype = 3) + 
#'  ggplot2::coord_flip() + 
#'  ggplot2::ggtitle("Comparing the prior and posterior")
#'  
#' # compare very wide and very narrow priors using roaches example
#' # (see help(roaches, "rstanarm") for info on the dataset)
#' roaches$roach100 <- roaches$roach1 / 100
#' wide_prior <- normal(0, 10)
#' narrow_prior <- normal(0, 0.1)
#' fit_pois_wide_prior <- stan_glm(y ~ treatment + roach100 + senior, 
#'                                 offset = log(exposure2), 
#'                                 family = "poisson", data = roaches, 
#'                                 prior = wide_prior)
#' posterior_vs_prior(fit_pois_wide_prior, pars = "beta", prob = 0.5, 
#'                    group_by_parameter = TRUE, color_by = "vs", 
#'                    facet_args = list(scales = "free"))
#'                    
#' fit_pois_narrow_prior <- update(fit_pois_wide_prior, prior = narrow_prior)
#' posterior_vs_prior(fit_pois_narrow_prior, pars = "beta", prob = 0.5, 
#'                    group_by_parameter = TRUE, color_by = "vs", 
#'                    facet_args = list(scales = "free"))
#'                    
#' 
#' # look at cutpoints for ordinal model
#' fit_polr <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit",
#'                       prior = R2(0.2, "mean"), init_r = 0.1)
#' (gg_polr <- posterior_vs_prior(fit_polr, regex_pars = "\\|", color_by = "vs",
#'                                group_by_parameter = TRUE))
#' # flip the x and y axes
#' gg_polr + ggplot2::coord_flip()
#' }
#' 
#' @importFrom ggplot2 geom_pointrange facet_wrap aes_string labs
#'   scale_x_discrete element_line element_text
#' 
posterior_vs_prior <- function(object, ...) {
  UseMethod("posterior_vs_prior")
}

#' @rdname posterior_vs_prior
#' @export 
posterior_vs_prior.stanreg <-
  function(object,
           pars = NULL,
           regex_pars = NULL,
           prob = 0.9,
           color_by = c("parameter", "vs", "none"),
           group_by_parameter = FALSE,
           facet_args = list(),
           ...) {
    if (!used.sampling(object))
      STOP_sampling_only("posterior_vs_prior")
    stopifnot(isTRUE(prob > 0 && prob < 1))
    
    # stuff needed for ggplot
    color_by <- switch(
      match.arg(color_by),
      parameter = "parameter",
      vs = "model",
      none = NA
    )
    if (group_by_parameter) {
      group_by <- "parameter"
      xvar <- "model"
    } else {
      group_by <- "model"
      xvar <- "parameter"
    }
    aes_args <-
      list(
        x = xvar,
        y = "estimate",
        ymin = "lb",
        ymax = "ub"
      )
    if (!is.na(color_by))
      aes_args$color <- color_by
    if (!length(facet_args)) {
      facet_args <- list(facets = group_by)
    } else {
      facet_args$facets <- group_by
    }
    
    # draw from prior distribution and prepare plot data
    message("\nDrawing from prior...")
    capture.output(
      Prior <- suppressWarnings(update(
        object,
        prior_PD = TRUE,
        refresh = -1,
        chains = 2
      ))
    )
    objects <- nlist(Prior, Posterior = object)
    plot_data <-
      stack_estimates(objects,
                      prob = prob,
                      pars = pars,
                      regex_pars = regex_pars)
    
    graph <-
      ggplot(plot_data, mapping = do.call("aes_string", aes_args)) +
      geom_pointrange(...) +
      do.call("facet_wrap", facet_args) +
      theme_default() +
      xaxis_title(FALSE) +
      yaxis_title(FALSE) +
      xaxis_ticks() +
      xaxis_text(angle = -30, hjust = 0) + 
      grid_lines(color = "gray", size = 0.1)
      
    if (group_by == "parameter")
      return(graph)
    
    # clean up x-axis labels a bit if tick labels are parameter names
    # (user can override this after plot is created if need be,
    # but this makes the default a bit nicer if many parameters)
    abbrevs <- abbreviate(plot_data$parameter, 12, method = "both.sides", dot = TRUE)
    graph + scale_x_discrete(name = "Parameter", labels = abbrevs)
  }


# internal ----------------------------------------------------------------
stack_estimates <-
  function(models = list(),
           pars = NULL,
           regex_pars = NULL,
           prob = NULL) {
    mnames <- names(models)
    if (is.null(mnames)) {
      mnames <- paste0("model_", seq_along(models))
    } else {
      has_name <- nzchar(mnames)
      if (!all(has_name))
        stop("Either all or none of the elements in 'models' should be named.")
    }
    
    alpha <- (1 - prob) / 2
    probs <- sort(c(0.5, alpha, 1 - alpha))
    labs <- c(paste0(100 * probs, "%"))
    ests <- lapply(models, function(x) {
      s <- summary(x,
                   pars = pars,
                   regex_pars = regex_pars,
                   probs = probs)
      if (is.null(pars))
        s <- s[!rownames(s) %in% c("log-posterior", "mean_PPD"),]
      s[, labs, drop = FALSE]
    })
    est_column <- function(list_of_matrices, col) {
      x <- sapply(list_of_matrices, function(x) x[, col])
      if (is.list(x))
        unlist(x)
      else
        as.vector(x)
    }
    data.frame(
      model = rep(mnames, times = sapply(ests, nrow)),
      parameter = unlist(lapply(ests, rownames)),
      estimate = est_column(ests, labs[2]),
      lb = est_column(ests, labs[1]),
      ub = est_column(ests, labs[3])
    )
  }

Try the rstanarm package in your browser

Any scripts or data that you put into this service are public.

rstanarm documentation built on Feb. 11, 2020, 5:06 p.m.