Nothing
stepmented.lm <- function(obj, seg.Z, psi, npsi, fixed.psi=NULL, control=seg.control(),
keep.class=FALSE, var.psi=FALSE, ...) {
# ---------
mylm<-function(x,y,w=1,offs=0){
x1<-x*sqrt(w)
y<-y-offs
y1<-y*sqrt(w)
XtX <- crossprod(x1)
b<-drop(solve(XtX,crossprod(x1,y1)))
fit<-drop(tcrossprod(x,t(b)))
r<-y-fit
o<-list(coefficients=b,fitted.values=fit,residuals=r, df.residual=length(y)-length(b), invXtX=solve(XtX), w=w)
o
}
#-----------
toMatrix<-function(.x, ki){
# ripete ogni .x[,j] ki[j] volte
if(ncol(.x)!=length(ki)) stop("It should be ncol(.x)==length(ki)")
if(all(ki==1)) return(.x)
M<-vector("list", length=length(ki))
for(j in 1:length(ki)) M[[j]]<-replicate(ki[[j]], cbind(.x[,j]), simplify=TRUE)
do.call(cbind, M)
}
#-----------
agg<- 1-control$fc
it.max<- control$it.max
tol<- control$toll
display<- control$visual
digits <- control$digits
min.step <- control$min.step
#conv.psi <- control$conv.psi
alpha <- control$alpha
fix.npsi <- control$fix.npsi
n.boot <- control$n.boot
break.boot<- control$break.boot + 2
seed<- control$seed
fix.npsi<-control$fix.npsi
h<-control$h
#-----------
#browser()
#if(!(inherits(obj,"lm") || is.vector(obj) || is.ts(obj))) stop("obj should be a 'lm' fit, a 'vector' or 'ts' object")
if(!inherits(obj,"lm")) stop("obj should be a 'lm' fit")
y.only.vector <- FALSE
Fo0 <- formula(obj)
if(missing(seg.Z)) {
#if(length(all.vars(formula(obj)))==1)
seg.Z<- as.formula(paste("~", "id"))
assign("id",1:length(obj$residuals),parent.frame())
#id<-1:length(obj$residuals)
# if(length(all.vars(formula(obj)))==2) seg.Z<- as.formula(paste("~", all.vars(formula(obj))[2])) else stop("please specify 'seg.Z'")
}
n.Seg<-length(all.vars(seg.Z))
id.npsi<-FALSE
if("V" %in% sub("V[1-9]*[0-9]","V", c(all.vars(seg.Z), all.vars(formula(obj) )[-1]))) stop("variable names 'V', 'V1', .. are not allowed")
if("U" %in% sub("U[1-9]*[0-9]","U", c(all.vars(seg.Z), all.vars(formula(obj) )[-1]))) stop("variable names 'U', 'U1', .. are not allowed")
if(any(c("$","[") %in% all.names(seg.Z))) stop(" '$' or '[' not allowed in 'seg.Z' ")
if(missing(psi)){
if(n.Seg==1){
if(missing(npsi)) npsi<-1
npsi<-lapply(npsi, function(.x).x)
if(length(npsi)!=length(all.vars(seg.Z))) stop("seg.Z and npsi do not match")
names(npsi)<-all.vars(seg.Z)
} else {#se n.Seg>1
#if(missing(npsi)) stop(" with multiple segmented variables in seg.Z, 'psi' or 'npsi' should be supplied", call.=FALSE)
if (missing(npsi)) {
npsi<-rep(1, n.Seg)
names(npsi)<-all.vars(seg.Z)
}
if(length(npsi)!=n.Seg) stop(" 'npsi' and seg.Z should have the same length")
if(!all(names(npsi) %in% all.vars(seg.Z))) stop(" names in 'npsi' and 'seg.Z' do not match")
}
psi<-lapply(npsi, function(.x) rep(NA,.x))
id.npsi<-TRUE ##id.npsi<-FALSE #e' stato fornito npsi?
} else {
if(n.Seg==1){
if(!is.list(psi)) {psi<-list(psi);names(psi)<-all.vars(seg.Z)}
} else {#se n.Seg>1
if(!is.list(psi)) stop("with multiple terms in `seg.Z', `psi' should be a named list")
if(n.Seg!=length(psi)) stop("A wrong number of terms in `seg.Z' or `psi'")
if(!all(names(psi)%in%all.vars(seg.Z))) stop("Names in `seg.Z' and `psi' do not match")
}
}
n.psi<- length(unlist(psi))
#browser()
#if(missing(x)) x<-1:n
#if(missing(psi)) {
# if(missing(npsi)) npsi<-1
# psi<-min(x)+cumsum(rep(diff(range(x))/(npsi+1),npsi))
#}
##=========================================================================
#--- preso da segmented.lm
orig.call<-Call<-mf<-obj$call
orig.call$formula<- mf$formula<-formula(obj) #per consentire lm(y~.)
m <- match(c("formula", "data", "subset", "weights", "na.action","offset"), names(mf), 0L)
mf <- mf[c(1, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
if(class(mf$formula)[1]=="name" && !"~"%in%paste(mf$formula)) mf$formula<-eval(mf$formula)
mfExt<- mf
mf$formula<-update.formula(mf$formula,paste(seg.Z,collapse=".+"))
if(!is.null(obj$call$offset) || !is.null(obj$call$weights) || !is.null(obj$call$subset)){
mfExt$formula <-
update.formula(mf$formula,
paste(".~.+", paste(
c(all.vars(obj$call$offset),
all.vars(obj$call$weights),
all.vars(obj$call$subset)),
collapse = "+")
))
}
mf <- eval(mf, parent.frame())
n<-nrow(mf)
#questo serve per inserire in mfExt le eventuali variabili contenute nella formula con offset(..)
nomiOff<-setdiff(all.vars(formula(obj)), names(mf))
if(length(nomiOff)>=1) mfExt$formula<-update.formula(mfExt$formula,paste(".~.+", paste( nomiOff, collapse="+"), sep=""))
nomiTUTTI<-all.vars(mfExt$formula) #comprende anche altri nomi (ad es., threshold) "variabili"
nomiNO<-NULL
for(i in nomiTUTTI){
r<-try(eval(parse(text=i), parent.frame()), silent=TRUE)
if(class(r)[1]!="try-error" && length(r)==1 && !is.function(r) && !i%in%names(mf)) nomiNO[[length(nomiNO)+1]]<-i
}
if(!is.null(nomiNO)) mfExt$formula<-update.formula(mfExt$formula,paste(".~.-", paste( nomiNO, collapse="-"), sep=""))
mfExt<-eval(mfExt, parent.frame())
#mf <- mfExt
#browser()
if(nrow(mf)!=nrow(mfExt)) stop("missing values in any stepmented covariate?")
ww <- as.vector(model.weights(mf))
offs <- as.vector(model.offset(mf))
if (is.null(ww)) ww <- rep(1, n)
if (is.null(offs)) offs <- rep(0, n)
mt <- attr(mf, "terms")
interc<-attr(mt,"intercept")
y <- model.response(mf, "any")
XREG <- if (!is.empty.model(mt)) model.matrix(mt, mf, obj$contrasts)
namesXREG0<-colnames(XREG)
nameLeftSlopeZero<-setdiff(all.vars(seg.Z), names(coef(obj))) #in questo modo riconosce che sin(x*pi) NON e' x, ad esempio.
namesXREG0<-setdiff(namesXREG0, nameLeftSlopeZero)
id.duplic<-match(all.vars(formula(obj)),all.vars(seg.Z),nomatch=0)>0
if(any(id.duplic)) {
new.mf<-mf[,all.vars(formula(obj))[id.duplic],drop=FALSE]
new.XREGseg<-data.matrix(new.mf)
XREG<-cbind(XREG,new.XREGseg)
}
id.n.Seg<-(ncol(XREG)-n.Seg+1):ncol(XREG)
XREGseg<-XREG[,id.n.Seg,drop=FALSE]
XREG <- XREG[, match(c("(Intercept)", namesXREG0),colnames(XREG), nomatch = 0), drop = FALSE]
XREG<-XREG[,unique(colnames(XREG)), drop=FALSE]
n <- nrow(XREG)
#browser()
Z<-lapply(apply(XREGseg,2,list),unlist) #prende anche i nomi!
name.Z <- names(Z) <- colnames(XREGseg)
if(length(Z)==1 && is.vector(psi) && (is.numeric(psi)||is.na(psi))){
psi <- list(as.numeric(psi))
names(psi)<-name.Z
}
if (!is.list(Z) || !is.list(psi) || is.null(names(Z)) || is.null(names(psi))) stop("'psi' or 'npsi' have to be *named* when there are multiple stepmented variables")
id.nomiZpsi <- match(names(Z), names(psi))
if ((length(Z)!=length(psi)) || any(is.na(id.nomiZpsi))) stop("Length or names of 'seg.Z' and 'psi' do not match")
nome <- names(psi)[id.nomiZpsi]
psi <- psi[nome]
if(id.npsi){
for(i in 1:length(psi)) {
K<-length(psi[[i]])
if(any(is.na(psi[[i]]))) psi[[i]]<-(min(Z[[i]])+ diff(range(Z[[i]]))*(1:K)/(K+1))
}
} else {
for(i in 1:length(psi)) {
if(any(is.na(psi[[i]]))) psi[[i]]<- (min(Z[[i]])+ diff(range(Z[[i]]))*(1:K)/(K+1))
}
}
#########==================== SE PSI FIXED
id.psi.fixed <- FALSE
if(!is.null(fixed.psi)){
id.psi.fixed <- TRUE
if(is.numeric(fixed.psi) && n.Seg==1) {
fixed.psi<-list(fixed.psi)
names(fixed.psi)<-all.vars(seg.Z)
}
if(is.list(fixed.psi)) {
if(!(names(fixed.psi) %in% all.vars(seg.Z))) stop("names(fixed.psi) is not a subset of variables in 'seg.Z' ")
} else {
stop(" 'fixed.psi' has to be a named list ")
}
fixed.psi<-lapply(fixed.psi, sort)
Zfixed<-matrix(unlist(mapply(function(x,y)rep(x,y),Z[names(fixed.psi)], sapply(fixed.psi, length), SIMPLIFY = TRUE)), nrow=n)
n.fixed.psi<-sapply(fixed.psi, length)
rip.nomi <- rep( names(fixed.psi), n.fixed.psi)
rip.numeri <- unlist(lapply(n.fixed.psi, function(.x) 1:.x))
colnames(Zfixed) <- paste("U", rip.numeri,".fixed.",rip.nomi, sep="")
PSI <- matrix(unlist(fixed.psi), ncol=ncol(Zfixed), nrow=n, byrow = TRUE)
fixedU<-(Zfixed-PSI)*(Zfixed>PSI)
XREG<-cbind(XREG, fixedU)
}
#########====================END SE PSI FIXED
initial.psi<-psi
a <- sapply(psi, length) #n. di psi per ogni covariate
#per evitare che durante il processo iterativo i psi non siano ordinati
id.psi.group <- rep(1:length(a), times = a) #identificativo di apparteneza alla variabile
Z<-matrix(unlist(mapply(function(x,y)rep(x,y),Z,a,SIMPLIFY = TRUE)),nrow=n)
psi <- unlist(psi)
#se psi e' numerico, la seguente linea restituisce i valori ordinati all'interno della variabile..
psi<-unlist(tapply(psi,id.psi.group,sort))
k <- ncol(Z)
PSI <- matrix(rep(psi, rep(n, k)), ncol = k)
#controllo se psi e' ammissibile..
c1 <- apply((Z <= PSI), 2, all) #dovrebbero essere tutti FALSE (prima era solo <)
c2 <- apply((Z >= PSI), 2, all) #dovrebbero essere tutti FALSE (prima era solo >)
if(sum(c1 + c2) != 0 || is.na(sum(c1 + c2)) ) stop("starting psi out of the admissible range")
colnames(Z) <- nomiZ <- rep(nome, times = a)
ripetizioni <- as.numeric(unlist(sapply(table(nomiZ)[order(unique(nomiZ))], function(.x) {1:.x})))
#browser()
nomiU <- paste("U", ripetizioni, sep = "")
nomiU <- paste(nomiU, nomiZ, sep = ".")
nomiV <- paste("V", ripetizioni, sep = "")
nomiV <- paste(nomiV, nomiZ, sep = ".")
initial <- psi
obj0 <- obj
dev0 <-sum(ww*obj$residuals^2)
list.obj <- list(obj)
nomiOK<-nomiU
# invXtX<-if(!is.null(obj$qr)) chol2inv(qr.R(obj$qr)) else NULL #(XtX)^{-1}
# Xty<-crossprod(XREG,y)
# opz<-list(toll=toll,h=h, stop.if.error=stop.if.error, dev0=dev0, visual=visual, it.max=it.max,
# nomiOK=nomiOK, id.psi.group=id.psi.group, gap=gap, visualBoot=visualBoot, pow=pow, digits=digits,invXtX=invXtX, Xty=Xty,
# conv.psi=conv.psi, alpha=alpha, fix.npsi=fix.npsi, min.step=min.step, fc=fc)
x.lin <-XREG
rangeZ <- apply(Z, 2, range)
#browser()
plin<-ncol(x.lin)
#if(!is.list(psi)) psi<-list(psi)
#P <- length(psi) #n. variabili con breakpoints
#npsii <- sapply(psi, length) #n di psi for each covariate
P<-n.Seg
npsii<-a
npsi<- sum(npsii)
#Xtrue<-Z
#psi0 <- unlist(psi)
#PSI<- matrix(psi0, n, npsi, byrow=TRUE)
#if(ncol(x)!=P) stop("errore")
#Xtrue<-toMatrix(x, npsii)
#browser()
if(it.max == 0) {
U <- (Z>PSI)
colnames(U) <- paste(ripetizioni, nomiZ, sep = ".")
nomiU <- paste("U", colnames(U), sep = "")
#for (i in 1:ncol(U)) assign(nomiU[i], U[, i], envir = KK)
for(i in 1:ncol(U)) mfExt[nomiU[i]]<-mf[nomiU[i]]<-U[,i]
Fo <- update.formula(formula(obj), as.formula(paste(".~.+", paste(nomiU, collapse = "+"))))
obj <- update(obj, formula = Fo, evaluate=FALSE, data=mfExt) #data = mf,
if(!is.null(obj[["subset"]])) obj[["subset"]]<-NULL
obj<-eval(obj, envir=mfExt)
#if (model) obj$model <-mf #obj$model <- data.frame(as.list(KK))
psi <- cbind(psi, psi, 0)
rownames(psi) <- paste(paste("psi", ripetizioni, sep = ""), nomiZ, sep=".")
colnames(psi) <- c("Initial", "Est.", "St.Err")
obj$psi <- psi
return(obj)
}
c1 <- apply((Z <= PSI), 2, all) #dovrebbero essere tutti FALSE (prima era solo <)
c2 <- apply((Z >= PSI), 2, all) #dovrebbero essere tutti FALSE (prima era solo >)
if(sum(c1 + c2) != 0 || is.na(sum(c1 + c2)) ) stop("starting psi out of the admissible range")
if(is.null(alpha)) alpha<- max(.05, 1/length(y))
if(length(alpha)==1) alpha<-c(alpha, 1-alpha)
#browser()
opz<-list(toll=tol, dev0=dev0, display=display, it.max=it.max, agg=agg, digits=digits, rangeZ=rangeZ, usestepreg=FALSE,
id.psi.group=id.psi.group, h=h, limZ=NULL,
#nomiOK=nomiOK, , visualBoot=visualBoot, invXtX=invXtX, Xty=Xty, conv.psi=conv.psi,
alpha=alpha, fix.npsi=fix.npsi, min.step=min.step, npsii=npsii,
seed=control$seed, fit.psi0=control$fit.psi0)
# #################################################################################
# #### jump.fit(y, XREG=x.lin, Z=Xtrue, PSI, w=ww, offs, opz, return.all.sol=FALSE)
# #################################################################################
if(n.boot<=0){
obj<- step.lm.fit(y, x.lin, Z, PSI, ww, offs, opz, return.all.sol=FALSE)
} else {
#browser()
#if("seed" %in% names(control)) set.seed(control$seed)
obj<-step.lm.fit.boot(y, x.lin, Z, PSI, ww, offs, opz, n.boot, break.boot=break.boot)
seed<- obj$seed
}
# if(!is.list(obj)){
# warning("No breakpoint estimated", call. = FALSE)
# return(obj0)
# }
#browser()
id.warn<-obj$id.warn
it<-obj$it
psi<-obj$psi
psi.values<-if(n.boot<=0) obj$psi.values else obj$boot.restart
#i beta.c corripondono ai psi NON ordinati!!!
#
##Nelle funzioni step i beta.c NON servono. Righe sotto commentate l'8/3/24
#beta.c<- obj$beta.c
#beta.c<-unlist(tapply(psi, id.psi.group, function(.x)beta.c[order(.x)]))
#unlist(lapply(unique(id.psi.group), function(.x) beta.c[id.psi.group==.x][order(psi[id.psi.group==.x])]))
psi<-unlist(tapply(psi, id.psi.group, sort))
Z0<-apply(Z,2,sort)
psi.rounded<-sapply(1:npsi, function(j) Z0[sum(Z0[,j]<psi[j])+c(0,1),j])
#browser()
psi.mid<-apply(psi.rounded,2,mean)
#QUALI prendere? psi, psi.mid o psi.rounded?
PSI.mid<- matrix(psi, n, npsi, byrow = TRUE)
#bisogna evitare che una qualche x_i sia uguale a psi, altrimenti la costruzione di V-> INF
DEN <- abs(Z - PSI.mid)
DEN <- apply(DEN, 2, function(.x) pmax(.x, sort(.x)[2]/2)) #pmax(.x, diff(range(.x))/1000))
#xx=Xtrue - PSI.mid
#ss=n^(-.8)
#den <- -xx+2*xx*pnorm(xx/ss)+2*ss*dnorm(xx/ss) #.05*log(cosh((x-.5)/.05)))
V <- (1/(2 * DEN))
colnames(V)<-nomiV
U <- (Z * V + 1/2)
colnames(U)<-nomiU
Vxb <- -V #* rep(-beta.c, each = nrow(V))
nomiVxb <- gsub("V", "psi", nomiV)
nnomi <- c(nomiU, nomiVxb)
#browser()
for(i in 1:ncol(U)) {
mfExt[nomiU[i]]<-mf[nomiU[i]] <- U[,i]
mfExt[nomiVxb[i]]<-mf[nomiVxb[i]] <- Vxb[,i]
}
Fo <- update.formula(formula(obj0), as.formula(paste(".~.+", paste(nnomi, collapse = "+"))))
objF <- update(obj0, formula = Fo, evaluate=FALSE, data = mfExt)
#eliminiamo subset, perche' se e' del tipo subset=x>min(x) allora continuerebbe a togliere 1 osservazione
if(!is.null(objF[["subset"]])) objF[["subset"]]<-NULL
objF<-eval(objF, envir=mfExt)
objF$offset<- obj0$offset
objW<-objF
#browser()
#se1=predict.lm(objF, se.fit=TRUE)
#ff<-1.934+1.61*(x>.605)
#matplot(x, cbind(ff, ff-2*se$se.fit, ff+2*se$se.fit), type="l")
#controllo se qualche coeff e' NA..
isNAcoef<-any(is.na(objF$coefficients))
#browser()
if (isNAcoef) {
nameNA.psi <- names(objF$coefficients)[which(is.na(objF$coefficients))]
nameNA.U <- gsub("psi", "U", nameNA.psi)
if (fix.npsi) {
cat("breakpoint estimate(s):", as.vector(psi), "\n")
stop("coef ", nameNA.psi, " is NA: breakpoint(s) at the boundary or too close together", call. = FALSE)
} else {
warning("some estimate is NA (too many breakpoints?): removing ", length(nameNA.psi), " jump-point(s)", call. = FALSE)
Fo <- update(Fo, paste(".~ .-", nameNA.U, "-", nameNA.psi))
objF <- update(obj0, formula = Fo, evaluate = TRUE, data = mfExt)
if (!is.null(objF[["subset"]])) objF[["subset"]] <- NULL
#objF$offset <- obj0$offset
idNA.psi <- match(nameNA.psi, nomiVxb)
nomiVxb <- setdiff(nomiVxb, nameNA.psi)
nomiU <- setdiff(nomiU, nameNA.U)
Z <- Z[, -idNA.psi, drop = FALSE]
PSI.mid<- PSI.mid[, -idNA.psi, drop = FALSE]
id.psi.group <- id.psi.group[-idNA.psi]
psi <- psi[-idNA.psi]
psi.rounded <- psi.rounded[, -idNA.psi, drop = FALSE]
}
}
#organizziamo i risultati da restituire per psi...
colnames(psi.rounded)<-names(psi)<-nomiVxb
rownames(psi.rounded)<-c("inf [","sup (")
#browser()
ris.psi<-matrix(NA,length(psi), 3)
colnames(ris.psi) <- c("Initial", "Est.", "St.Err")
rownames(ris.psi) <- nomiVxb
ris.psi[,2]<-psi
#ris.psi[,3]<-sqrt(vv)
a<-tapply(id.psi.group, id.psi.group, length)
#NB "a" deve essere un vettore che si appatta con "initial.psi" per ottnetere "initial" sotto... Se una variabile alla fine risulta
# senza breakpoint questo non avviene e ci sono problemi nella formazione di "initial". Allora costruisco a.ok
a.ok<-NULL
nomiFINALI<-unique(nomiZ)
for(j in name.Z){
if(j %in% nomiFINALI) {
a.ok[length(a.ok)+1]<-a[1]
a<-a[-1]
} else {
a.ok[length(a.ok)+1]<-0
} #ifelse(name.Z %in% nomiFINALI,1,0)
}
#initial<-unlist(mapply(function(x,y){if(is.na(x)[1])rep(x,y) else x }, initial.psi, a.ok, SIMPLIFY = TRUE))
if(length(psi)!=length(initial.psi)){
ris.psi[,1]<- NA
} else {
initial<-unlist(mapply(function(x,y){if(is.na(x)[1])rep(x,y) else x }, initial.psi[nomiFINALI], a.ok[a.ok!=0], SIMPLIFY = TRUE))
ris.psi[,1]<-initial #if(stop.if.error) ris.psi[,1]<-initial
}
objF$psi <- ris.psi
objF$psi.rounded <- psi.rounded
#objW<-objF
#stima il modello "vero" (non-working)
U<- (Z > PSI.mid)
colnames(U)<-nomiU
X <- cbind(x.lin, U)
objF$objW<- objW
objF$obj.ok<-mylm(X, y, w=ww, offs=offs) #coefficients=b,fitted.values=fit,residuals=r, df.residual=length(y)-length(b))
objF$fitted.values<-objF$obj.ok$fitted.values
objF$residuals<- objF$obj.ok$residuals
objF$coefficients[names(objF$obj.ok$coefficients)] <- objF$obj.ok$coefficients
#objF$coefficients[1:length(objF$obj.ok$coefficients)] <- objF$obj.ok$coefficients
objF$coefficients[nomiVxb] <-psi.rounded[1,]
objF$nameUV <- list(U = drop(nomiU), V = nomiV, Z = name.Z) #Z = name.Z
objF$rangeZ<-obj$rangeZ
objF$Z<-Z[,unique(name.Z),drop=FALSE]
objF$call <- match.call()
objF$orig.call<-orig.call
objF$psi.history <- psi.values
objF$it <- it
objF$epsilon <- obj$epsilon
objF$id.warn <- id.warn
if(n.boot>0) objF$seed <- seed
class(objF) <- c("stepmented", class(obj0))
#Un effetto aggiuntivo..
Z.in.obj<-intersect(all.vars(Fo0), all.vars(seg.Z))
if(length(Z.in.obj)>0){
tt<-terms(Fo0)#, specials=Z.in.obj)
#id<-match(Z.in.obj, all.vars(Fo0))-1 #1 e' per la risposta..
id<-match(Z.in.obj, intersect(all.vars(Fo0), names(mf)))-1
nome<-attr(tt,"term.labels")[id]
Fo.ok<-as.formula(paste("~0", nome, sep="+"))
f.x<-matrix(NA, 150, ncol(objF$Z[,Z.in.obj,drop=FALSE])) #prima era nrow(objF$Z) invece che 100
for(j in 1:length(Z.in.obj)){
idPsi <- nomiVxb[endsWith(nomiVxb, paste(".", Z.in.obj[j], sep = ""))]
#psi <- coef(objF)[idPsi]
dd<-data.frame(seq(min(objF$Z[,Z.in.obj[j]]), max(objF$Z[,Z.in.obj[j]]), l=nrow(f.x)))
names(dd)<- Z.in.obj[j]
M<-model.matrix(Fo.ok, data=dd)
f.x[,j]<-M%*% coef(objF)[colnames(M)]
}
colnames(f.x)<-Z.in.obj
objF$f.x<-f.x
}
objF$psi<- objF$psi[,-1,drop=FALSE] #rimuovi la colonna Initial
if(var.psi){
Cov <- vcov.stepmented(objF, k=NULL)
id <- match(nomiVxb, names(coef(objF)))
vv <- if (length(id) == 1) Cov[id, id] else diag(Cov[id, id])
objF$psi[,"St.Err"]<-sqrt(vv)
objF$vcov<- Cov
}
#Cov[nomiVxb, ]<- Cov[, nomiVxb] <- 0
# var.Tay<-function(est1,est2,v1,v2,v12){
# r<- est1/est2
# vv<-(v1+v2*r^2-2*r*v12)/est2^2
# vv}
#
# varPsi<- rep(NA, length(nomiU))
# for(j in 1:length(nomiU)){
# num<-objF$coefficients[nomiVxb[j]]
# den<-objF$coefficients[nomiU[j]]
# v.g <-Cov[nomiVxb[j],nomiVxb[j]]
# v.b<- Cov[nomiU[j],nomiU[j]]
# cov.g.b <- Cov[nomiVxb[j],nomiU[j]]
# #if(is.null(rho))
# rho<-mean(Xtrue[, nomiZ[j] ,drop=TRUE]<psi[[nomiVxb[j]]])
# #browser()
# rho<- rho^(sqrt(1/n))
# cov.g.b<- rho*sqrt(v.g*v.b)
# varPsi[j]<-var.Tay(num, den, v.g, v.b, cov.g.b)
# }
# names(varPsi) <- nomiVxb
return(objF)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.