R/NET.R

Defines functions x.within.y net

Documented in net

### Terrence D. Jorgensen
### Last updated: 10 January 2021
### semTools functions for Nesting and Equivalence Testing


## -----------------
## Class and Methods
## -----------------

##' Class For the Result of Nesting and Equivalence Testing
##'
##' This class contains the results of nesting and equivalence testing among
##' multiple models
##'
##'
##' @name Net-class
##' @aliases Net-class show,Net-method summary,Net-method
##' @docType class
##'
##' @slot test Logical \code{matrix} indicating nesting/equivalence among models
##' @slot df The degrees of freedom of tested models
##'
##' @section Objects from the Class: Objects can be created via the
##' \code{\link{net}} function.
##'
##' @param object An object of class \code{Net}.
##'
##' @return
##' \item{show}{\code{signature(object = "Net")}: prints the logical matrix of
##'   test results. \code{NA} indicates a model did not converge.}
##' \item{summary}{\code{signature(object = "Net")}: prints a narrative
##'   description of results. The original \code{object} is invisibly returned.}
##'
##' @author
##'   Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' @seealso \code{\link{net}}
##'
##' @examples
##'
##' # See the example in the net function.
##'
setClass("Net", representation(test = "matrix", df = "vector"))


##' @rdname Net-class
##' @aliases show,Net-method
##' @export
setMethod("show", "Net",
function(object) {
  if (length(object@test)) {
    m <- as.matrix(unclass(object@test))
    m[upper.tri(m, diag = TRUE)] <- ""
    cat("
        If cell [R, C] is TRUE, the model in row R is nested within column C.

        If the models also have the same degrees of freedom, they are equivalent.

        NA indicates the model in column C did not converge when fit to the
        implied means and covariance matrix from the model in row R.

        The hidden diagonal is TRUE because any model is equivalent to itself.
        The upper triangle is hidden because for models with the same degrees
        of freedom, cell [C, R] == cell [R, C].  For all models with different
        degrees of freedom, the upper diagonal is all FALSE because models with
        fewer degrees of freedom (i.e., more parameters) cannot be nested
        within models with more degrees of freedom (i.e., fewer parameters).
        \n")
    print(m, quote = FALSE)
  } else {
    cat(data.class(object@test), "(0)\n", sep = "")
  }
  invisible(object)
})


##' @rdname Net-class
##' @aliases summary,Net-method
##' @export
setMethod("summary", "Net",
function(object) {
  DFs <- object@df
  x <- object@test
  mods <- colnames(x)
  for (R in 2:nrow(x)) {
    for (C in (R - 1):1) {
      ## if model didn't converge (logical value is missing), go to next iteration
      if (is.na(x[R, C])) next
      ## if the models are not nested, go to next iteration
      if (!x[R, C]) next
      ## choose message based on whether models are equivalent or nested
      if (identical(DFs[R], DFs[C])) {
        rel <- "equivalent to"
      } else {
        rel <- "nested within"
      }
      cat("Model \"", mods[R], "\" is ", rel, " model \"", mods[C], "\"\n", sep = "")
    }
  }
  invisible(object)
})



## --------------------
## Constructor Function
## --------------------

##' Nesting and Equivalence Testing
##'
##' This test examines whether pairs of SEMs are nested or equivalent.
##'
##' The concept of nesting/equivalence should be the same regardless of
##' estimation method. However, the particular method of testing
##' nesting/equivalence (as described in Bentler & Satorra, 2010) employed by
##' the \code{net} function analyzes summary statistics (model-implied means and
##' covariance matrices, not raw data). In the case of robust methods like MLR,
##' the raw data is only utilized for the robust adjustment to SE and chi-sq,
##' and the net function only checks the unadjusted chi-sq for the purposes of
##' testing nesting/equivalence.  This method also applies to models for
##' categorical data, following the procedure described by Asparouhov & Muthen
##' (2019).
##'
##'
##' @importFrom lavaan lavInspect
##'
##' @param \dots The \code{lavaan} objects used for test of nesting and
##'   equivalence
##' @param crit The upper-bound criterion for testing the equivalence of models.
##'   Models are considered nested (or equivalent) if the difference between
##'   their \eqn{\chi^2} fit statistics is less than this criterion.
##'
##' @return The \linkS4class{Net} object representing the outputs for nesting
##'   and equivalent testing, including a logical matrix of test results and a
##'   vector of degrees of freedom for each model.
##'
##' @author
##'   Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' @references
##'
##' Bentler, P. M., & Satorra, A. (2010). Testing model nesting and equivalence.
##' \emph{Psychological Methods, 15}(2), 111--123. \doi{10.1037/a0019625}
##'
##' Asparouhov, T., & Muthen, B. (2019). Nesting and equivalence testing for
##' structural equation models. \emph{Structural Equation Modeling, 26}(2),
##' 302--309. \doi{10.1080/10705511.2018.1513795}
##'
##' @examples
##'
##' \dontrun{
##' m1 <- ' visual  =~ x1 + x2 + x3
##' 	       textual =~ x4 + x5 + x6
##' 	       speed   =~ x7 + x8 + x9 '
##'
##'
##' m2 <- ' f1  =~ x1 + x2 + x3 + x4
##' 	       f2 =~ x5 + x6 + x7 + x8 + x9 '
##'
##' m3 <- ' visual  =~ x1 + x2 + x3
##' 	       textual =~ eq*x4 + eq*x5 + eq*x6
##' 	       speed   =~ x7 + x8 + x9 '
##'
##' fit1 <- cfa(m1, data = HolzingerSwineford1939)
##' fit1a <- cfa(m1, data = HolzingerSwineford1939, std.lv = TRUE) # Equivalent to fit1
##' fit2 <- cfa(m2, data = HolzingerSwineford1939) # Not equivalent to or nested in fit1
##' fit3 <- cfa(m3, data = HolzingerSwineford1939) # Nested in fit1 and fit1a
##'
##' tests <- net(fit1, fit1a, fit2, fit3)
##' tests
##' summary(tests)
##' }
##'
##' @export
net <- function(..., crit = .0001) {
  ## put fitted objects in a list
  fitList <- list(...)

  ## check that they are all lavaan objects
  notLavaan <- !sapply(fitList, inherits, what = "lavaan")
  if (any(notLavaan)) {
    fitNames <- sapply(as.list(substitute(list(...)))[-1], deparse)
    stop(paste("The following arguments are not fitted lavaan objects:\n",
               paste(fitNames[notLavaan], collapse = "\t")))
  }

  ## remove any that did not converge
  nonConv <- !sapply(fitList, lavInspect, what = "converged")
  if (all(nonConv)) {
    stop('No models converged')
  } else if (any(nonConv)) {
    fitNames <- sapply(as.list(substitute(list(...)))[-1], deparse)
    message('The following models did not converge, so they are ignored:\n',
            paste(fitNames[nonConv], collapse = ",\t"))
    fitList <- fitList[which(!nonConv)]
  }

  ## check for meanstructure
  meanstructure <- sapply(fitList, function(x) lavInspect(x, "options")$meanstructure)
  if (!(all(meanstructure) || !any(meanstructure)))
    stop('Some (but not all) fitted lavaan objects include a mean structure. ',
         'Please re-fit all models with the argument meanstructure=TRUE.')

  ## get degrees of freedom for each model
  DFs <- sapply(fitList, function(x) lavInspect(x, "fit")["df"])

  ## name according to named objects, with DF in parentheses
  fitNames <- names(fitList)
  dotNames <- sapply(as.list(substitute(list(...)))[-1], deparse)
  if (any(nonConv)) dotNames <- dotNames[which(!nonConv)]
  if (is.null(names(fitList))) {
    fitNames <- dotNames
  } else {
    noName <- which(fitNames == "")
    fitNames[noName] <- dotNames[noName]
  }
  names(fitList) <- paste(fitNames, " (df = ", DFs, ")", sep = "")

  ## sort list according to DFs
  fitList <- fitList[order(DFs)]
  fitNames <- fitNames[order(DFs)]
  orderedDFs <- DFs[order(DFs)]

  ## create structure for sequence of tests (logical matrix), FALSE by default
  nestMat <- matrix(FALSE, length(fitList), length(fitList),
                    dimnames = list(names(fitList), fitNames))
  diag(nestMat) <- TRUE # every model is equivalent with itself

  ## Loop through sorted models in sequence of most to least restricted model
  for (R in 2:nrow(nestMat)) {
    for (C in (R - 1):1) {
      ## test for nesting/equivalence
      nestMat[R, C] <- x.within.y(x = fitList[[R]], y = fitList[[C]], crit = crit)
      ## if models are equivalent, set above-diagonal value to TRUE
      if (identical(orderedDFs[R], orderedDFs[C])) nestMat[C, R] <- nestMat[R, C]
      if (C == 1) next # to prevent the next 2 tests from returning an error
      ## if model didn't converge (logical value is missing), go to next iteration
      if (is.na(nestMat[R, C]) | is.na(nestMat[R - 1, C - 1])) next
      ## check whether nesting is implied, to skip unnecessary tests
      if (nestMat[R, C] & nestMat[R - 1, C - 1]) {
        nestMat[R, C - 1] <- TRUE
        next
      }
    }
  }
  out <- new("Net", test = nestMat, df = orderedDFs)
  out
}



## --------------------------------------------------------------------
## Hidden Function to test whether model "x" is nested within model "y"
## --------------------------------------------------------------------

#' @importFrom lavaan lavInspect lavNames
x.within.y <- function(x, y, crit = .0001) {
  if (!lavInspect(x, "converged")) return(NA)
  if (!lavInspect(y, "converged")) return(NA)

  ## not currently implemented unless all variables are considered random
  exoX <- lavInspect(x, "options")$fixed.x & length(lavNames(x, "ov.x"))
  exoY <- lavInspect(y, "options")$fixed.x & length(lavNames(y, "ov.x"))
  if (exoX | exoY) {
    stop(c("The net() function does not work with exogenous variables.\n",
           "Fit the model again with 'fixed.x = FALSE'"))
  }
  ## variable names
  Xnames <- sort(lavNames(x))
  Ynames <- sort(lavNames(y))
  if (!identical(Xnames, Ynames))
    stop("Models do not contain the same variables")

  ## check that the analyzed data matches
  xData <- sort(unlist(lavInspect(x, "sampstat")))
  yData <- sort(unlist(lavInspect(y, "sampstat")))
  names(xData) <- NULL
  names(yData) <- NULL
  if (!isTRUE(all.equal(xData, yData, tolerance = crit)))
    stop("Sample statistics differ. Models must apply to the same data")
  #FIXME: this method requires raw data
  # xData <- lavInspect(x, "data")
  # if (is.list(xData)) xData <- do.call(rbind, xData)
  # xData <- xData[ , order(Xnames)]
  # yData <- lavInspect(y, "data")
  # if (is.list(yData)) yData <- do.call(rbind, yData)
  # yData <- yData[ , order(Ynames)]
  # if (!identical(xData, yData)) stop("Models must apply to the same data")

  ## check degrees of freedom support nesting structure
  if (lavInspect(x, "fit")["df"] < lavInspect(y, "fit")["df"])
    stop("x cannot be nested within y because y is more restricted than x")
  ## check sample sizes
  N <- lavInspect(x, "nobs")
  if (!all(N == lavInspect(y, "nobs"))) stop("Sample sizes differ. Models must apply to the same data")

  ## model-implied moments
  Sigma <- lavInspect(x, "cov.ov")
  nBlocks <- if (is.list(Sigma)) length(Sigma) else 1L
  ## mean structure?
  Mu <- lavInspect(x, "mean.ov")
  if (nBlocks == 1L) {
    if (!length(Mu)) Mu <- NULL
  } else {
    if (all(sapply(Mu, length) == 0)) Mu <- NULL
  }
  ## thresholds?
  Thr <- lavInspect(x, "thresholds")
  if (nBlocks == 1L) {
    if (!length(Thr)) Thr <- NULL
  } else {
    if (all(sapply(Thr, length) == 0)) Thr <- NULL
  }
  if (!is.null(Thr)) attr(Thr, "th.idx") <- lavInspect(x, "th.idx")

  ## If DWLS, extract WLS.V and NACOV
  estimator <- lavInspect(x, "options")$estimator
  if (estimator == "DWLS") {
    WLS.V <- lavInspect(x, "WLS.V")
    NACOV <- lavInspect(x, "gamma")
    #TODO: check against same output from y
  } else {
    WLS.V <- NULL
    NACOV <- NULL
  }

  ## fit model and check that chi-squared < crit

  suppressWarnings(try(newFit <- lavaan::update(y, data = NULL,
                                                sample.cov = Sigma,
                                                sample.mean = Mu,
                                                sample.nobs = N,
                                                sample.th = Thr,
                                                estimator = estimator,
                                                WLS.V = WLS.V, NACOV = NACOV,
                                                se = "none", # to save time
                                                test = "standard")))
  if (!lavInspect(newFit, "converged")) return(NA) else {
    result <- lavInspect(newFit, "fit")[["chisq"]] < crit
    if (lavInspect(x, "fit")["df"] ==
        lavInspect(y, "fit")["df"]) return(c(Equivalent = result))
  }
  c(Nested = result)
}

Try the semTools package in your browser

Any scripts or data that you put into this service are public.

semTools documentation built on May 10, 2022, 9:05 a.m.