Nothing
getPguess <-
function(method = c("duotrio", "tetrad", "threeAFC",
"twoAFC", "triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
{
## get guessing probability for all protocols
method <- match.arg(method)
double <- as.logical(double[1L])
pg <- switch(method,
duotrio = 1/2,
twoAFC = 1/2,
threeAFC = 1/3,
triangle = 1/3,
tetrad = 1/3,
hexad = 1/10,
twofive = 1/10,
twofiveF = 2/5)
if(double) pg^2 else pg
}
getFamily <-
function(method = c("duotrio", "tetrad", "threeAFC",
"twoAFC", "triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
{
method <- match.arg(method)
double <- as.logical(double[1L])
if(method %in% c("hexad", "twofive", "twofiveF") && double)
stop("'double' method for 'hexad', 'twofive' and 'twofiveF' is not yet implemented")
if(!double) {
fam <- switch(method,
duotrio = duotrio(),
tetrad = tetrad(),
triangle = triangle(),
twoAFC = twoAFC(),
threeAFC = threeAFC(),
hexad = hexad(),
twofive = twofive(),
twofiveF = twofiveF())
} else {
fam <- switch(method,
duotrio = doubleduotrio(),
tetrad = doubletetrad(),
triangle = doubletriangle(),
twoAFC = doubletwoAFC(),
threeAFC = doublethreeAFC())
}
fam
}
rescale <-
function(pc, pd, d.prime, std.err,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",
"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
{
m <- match.call(expand.dots = FALSE)
m[[1]] <- as.name("list")
m <- eval.parent(m) # evaluate the *list* of arguments
arg <- c("pc", "pd", "d.prime")
isPresent <- sapply(arg, function(arg) !is.null(m[[arg]]))
if(sum(isPresent) != 1)
stop("One and only one of pc, pd and d.prime should be given")
method <- match.arg(method)
double <- as.logical(double[1])
if(method %in% c("hexad", "twofive", "twofiveF") && double)
stop("'double' method for 'hexad', 'twofive' and 'twofiveF' is not yet implemented")
Pguess <- getPguess(method=method, double=double)
par <- arg[isPresent]
if(!is.null(se <- m$std.err)) {
stopifnot(is.numeric(se) && length(se) == length(m[[par]]))
stopifnot(all(se[!is.na(se)] > 0))
}
if(par == "pc") {
pc <- m[[par]]
stopifnot(is.numeric(pc) && all(pc >= 0) && all(pc <= 1))
tooSmall <- pc < Pguess
pc[tooSmall] <- Pguess
pd <- pc2pd(pc, Pguess)
d.prime <- psyinv(pc, method = method, double=double)
if(!is.null(se)) {
se.pc <- se
se.pc[tooSmall] <- NA
se.pd <- se.pc / (1 - Pguess)
se.d.prime <-
se.pc / psyderiv(d.prime, method = method, double = double)
}
}
if(par == "pd") {
pd <- m[[par]]
stopifnot(is.numeric(pd) && all(pd >= 0) && all(pd <= 1))
pc <- pd2pc(pd, Pguess)
d.prime <- psyinv(pc, method = method, double = double)
if(!is.null(se)) {
se.pd <- se
se.pc <- se.pd * (1 - Pguess)
se.d.prime <-
se.pc / psyderiv(d.prime, method = method, double = double)
}
}
if(par == "d.prime") {
stopifnot(is.numeric(d.prime) && all(d.prime >= 0))
d.prime <- m[[par]]
pc <- psyfun(d.prime, method = method, double = double)
pd <- pc2pd(pc, Pguess)
if(!is.null(se)) {
se.d.prime <- se
se.pc <- se * psyderiv(d.prime, method = method, double = double)
se.pd <- se.pc / (1 - Pguess)
}
}
coef <- data.frame(pc = pc, pd = pd, d.prime = d.prime)
res <- list(coefficients = coef)
if(!is.null(se))
res$std.err <- data.frame(pc = se.pc, pd = se.pd,
d.prime = se.d.prime)
res <- c(res, list(method=method, double=double))
class(res) <- "rescale"
return(res)
}
print.rescale <- function(x, digits = getOption("digits"), ...)
{
txt <- if(x$double) {
paste("\nEstimates for the double", x$method, "protocol:\n", sep = " ")
} else {
paste("\nEstimates for the", x$method, "protocol:\n", sep = " ")
}
cat(txt)
print(coef(x))
if(!is.null(x$std.err)) {
cat("\nStandard errors:\n")
print(x$std.err)
}
return(invisible(x))
}
pc2pd <- function(pc, Pguess)
### Maps pc to pd
### arg: pc: numeric vector; 0 <= pc <= 1
### Pguess: the guessing probability; numeric scalar,
### 0 <= pc <= 1
### res: pd: numeric vector; 0 <= pc <= 1
{
stopifnot(is.numeric(Pguess) && length(Pguess) == 1 &&
Pguess >= 0 && Pguess <= 1)
stopifnot(is.numeric(pc) && all(pc >= 0) && all(pc <= 1))
pd <- (pc - Pguess) / (1 - Pguess)
pd[pc <= Pguess] <- 0
names(pd) <- names(pc)
return(pd)
}
pd2pc <- function(pd, Pguess) {
### Maps pd to pc
### arg: pd: numeric vector; 0 <= pc <= 1
### Pguess: the guessing probability; numeric scalar,
### 0 <= pc <= 1
### res: pc: numeric vector; 0 <= pc <= 1
stopifnot(is.numeric(Pguess) && length(Pguess) == 1 &&
Pguess >= 0 && Pguess <= 1)
stopifnot(is.numeric(pd) && all(pd >= 0) && all(pd <= 1))
pc <- Pguess + pd * (1 - Pguess)
names(pc) <- names(pd)
return(pc)
}
psyfun <-
function(d.prime,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",
"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
### Maps d.prime to pc for sensory discrimination protocols
### arg: d.prime: non-negative numeric vector
### res: pc: numeric vector
{
method <- match.arg(method)
double <- as.logical(double[1L])
stopifnot(all(is.numeric(d.prime)) && all(d.prime >= 0),
length(double) == 1L && is.logical(double))
psyFun <- getFamily(method=method, double=double)$linkinv
pc <- numeric(length(d.prime))
### Extreme cases are not handled well in the links, so we need:
OK <- d.prime < Inf
if(sum(OK) > 0)
pc[OK] <- psyFun(d.prime[OK])
pc[!OK] <- 1
names(pc) <- names(d.prime)
return(pc)
}
psyinv <- function(pc,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",
"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
### Maps pc to d.prime for sensory discrimination protocols
### arg: pc: numeric vector; 0 <= pc <= 1
### res: d.prime: numeric vector
{
method <- match.arg(method)
double <- as.logical(double[1L])
stopifnot(all(is.numeric(pc)) && all(pc >= 0) && all(pc <= 1),
length(double) == 1L && is.logical(double))
psyInv <- getFamily(method=method, double=double)$linkfun
d.prime <- numeric(length(pc))
### Extreme cases are not handled well in the links, so we need:
OK <- pc < 1
if(sum(OK) > 0)
d.prime[OK] <- psyInv(pc[OK])
d.prime[!OK] <- Inf
names(d.prime) <- names(pc)
return(d.prime)
}
psyderiv <-
function(d.prime,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",
"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)
### Computes the derivative of the psychometric functions at some
### d.prime for sensory discrimination protocols.
### arg: d.prime: non-negative numeric vector
### res: pc: numeric vector
{
method <- match.arg(method)
double <- as.logical(double[1L])
stopifnot(all(is.numeric(d.prime)) && all(d.prime >= 0),
length(double) == 1L && is.logical(double))
psyDeriv <- getFamily(method=method, double=double)$mu.eta
Deriv <- numeric(length(d.prime))
### Extreme cases are not handled well in the links, so we need:
OK <- (d.prime > 0 & d.prime < Inf)
if(sum(OK) > 0)
Deriv[OK] <- psyDeriv(d.prime[OK])
Deriv[d.prime == 0] <- NA
Deriv[d.prime == Inf] <- 0
names(Deriv) <- names(d.prime)
return(Deriv)
}
## findcr <-
## function (sample.size, alpha = .05, p0 = .5, pd0 = 0,
## type = c("difference", "similarity"))
## {
## ## Find the critical value of a one-tailed binomial test.
## type <- match.arg(type)
## ss <- sample.size
## if(ss != trunc(ss) | ss <= 0)
## stop("'sample.size' has to be a positive integer")
## if(alpha <= 0 | alpha >= 1)
## stop("'alpha' has to be between zero and one")
## if(p0 <= 0 | p0 >= 1)
## stop("'p0' has to be between zero and one")
## if(pd0 < 0 | pd0 > 1)
## stop("'pd0' has to be between zero and one")
## ## Core function:
## i <- 0
## if(type == "difference") {
## while (1 - pbinom(i, ss, pd0 + p0*(1-pd0)) > alpha) i <- i + 1
## i + 1
## }
## else {
## while(pbinom(i, ss, pd0 + p0*(1-pd0)) < alpha) i <- i + 1
## i - 1
## }
## }
test.crit <-
function(xcr, sample.size, p.correct = 0.5, alpha = 0.05, test)
### Is xcr the critical value of a one-tailed binomial test?
### Result: boolean
### OBS: there is deliberately no requirement that xcr should be
### positive or less than sample.size.
{
if(test %in% c("difference", "greater")) ## alternative is "greater"
((1 - pbinom(q = xcr - 1, size = sample.size, prob = p.correct) <= alpha) &&
(1 - pbinom(q = xcr - 2, size = sample.size, prob = p.correct) > alpha))
else if(test %in% c("similarity", "less")) ## alternative is "less"
((pbinom(q = xcr, size = sample.size, prob = p.correct) <= alpha) &&
(pbinom(q = xcr + 1, size = sample.size, prob = p.correct) > alpha))
else
stop("unknown 'test' argument")
}
findcr <-
function(sample.size, alpha = 0.05, p0 = 0.5, pd0 = 0,
test = c("difference", "similarity"))
### Find the critical value of a one-tailed binomial
### test. "difference" means a "greater" alternative hypothesis and
### "similarity" means a "less" alternative hypothesis.
### FIXME: What should this function do/return if the critical value
### is larger than the sample size? Or when it is negative as can
### happen with similarity? Examples:
### (xcr <- findcr(sample.size = 1, p0 = psyfun(1, "twoAFC"))) ## 2
### (xcr <- findcr(sample.size = 1, test = "similarity")) ## -1
### This means that there is no number large/small enough for this
### sample size that could give a significant p-value. Maybe this
### should just be a deliberate feature.
{
## match and test arguments:
test <- match.arg(test)
ss <- sample.size
### FIXME: Does this test work as intented?
if(ss != trunc(ss) | ss <= 0)
stop("'sample.size' has to be a positive integer")
if(alpha <= 0 | alpha >= 1)
stop("'alpha' has to be between zero and one")
if(p0 <= 0 | p0 >= 1)
stop("'p0' has to be between zero and one")
if(pd0 < 0 | pd0 > 1)
stop("'pd0' has to be between zero and one")
## core function:
pc <- pd2pc(pd0, p0)
if(test == "difference") {
crdiff <- function(cr)
1 - pbinom(q = cr - 1, size = ss, prob = pc) - alpha
interval <- c(0, ss + 2) ## deliberately outside allowed range
}
else if(test == "similarity") {
crdiff <- function(cr)
pbinom(q = cr + 1, size = ss, prob = pc) - alpha
interval <- c(-2, ss) ## deliberately outside allowed range
}
else ## should never occur
stop("'test' not recognized")
xcr <- round(uniroot(crdiff, interval = interval)$root)
## is xcr the critical value?:
is.crit <- test.crit(xcr = xcr, sample.size = ss, p.correct = pc,
alpha = alpha, test = test)
if(is.crit) return(xcr)
## if uniroot fails, then do a simple search around the vicinity of
## the result from uniroot:
max.iter <- 20 ## avoid infinite loop
xcr <- delimit(xcr - 10, lower = -1)
i <- 0
if(test == "difference") {
while(1 - pbinom(q = xcr + i, size = ss, prob = pc) > alpha) {
if(i > max.iter || xcr + i > ss) break
i <- i + 1
}
xcr <- xcr + i + 1
}
if(test == "similarity") {
while(pbinom(q = xcr + i, size = ss, prob = pc) < alpha) {
if(i > max.iter || xcr + i > ss) break
i <- i + 1
}
xcr <- xcr + i - 1
}
## is xcr now the critical value?:
is.crit <- test.crit(xcr = xcr, sample.size = ss, p.correct = pc,
alpha = alpha, test = test)
if(is.crit) return(xcr)
else stop("Failed to find critical value")
}
delimit <- function(x, lower, upper, set.na = FALSE)
### Sets the values of x < lower to lower and values of x > upper to
### upper. If set.na is TRUE values are set to NA. If both lower and
### upper are supplied, the (lower < upper) has to be TRUE.
{
m <- match.call()
m[[1]] <- as.name("list")
m <- eval.parent(m)
if(!is.null(m$lower) && !is.null(m$upper))
stopifnot(m$lower < m$upper)
if(!is.null(m$lower))
x[x < m$lower] <- ifelse(set.na, NA, m$lower)
if(!is.null(m$upper))
x[x > m$upper] <- ifelse(set.na, NA, m$upper)
return(x)
}
normalPvalue <-
### Computes the p-value for a statistic that follows a standard
### normal distribution under the null hypothesis.
### Arguments:
### statistic - a numerical (vector?)
### alternative - the type of alternative hypothesis
### Value:
### the p-value, possibly a vector.
function(statistic, alternative = c("two.sided", "less", "greater"))
{
alternative <- match.arg(alternative)
stopifnot(all(is.finite(statistic)))
p.value <-
switch(alternative,
"greater" = pnorm(statistic, lower.tail = FALSE),
"less" = pnorm(statistic, lower.tail = TRUE),
"two.sided" = 2 * pnorm(abs(statistic), lower.tail = FALSE))
return(p.value)
}
## Do not partially match arguments.
## If possible give functions explicitly named arguments - preferably
## with default values.
## Value readability over speed.
## Value accuracy over speed.
## Use small functions with conceptual - easy-to-understand tasks.
##
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.