R/dif.logisticregression.R

Defines functions dif.logistic.regression

Documented in dif.logistic.regression

## File Name: dif.logisticregression.R
## File Version: 1.206



# This function performs itemwise DIF analysis by using logistic regression methods     ##
# uniform and nonuniform DIF                                                            ##
dif.logistic.regression <- function( dat, group, score, quant=1.645)
{
    I <- ncol(dat)
    matr <- NULL
    cat('Items ')
    for (ii in 1L:I){
        dat.ii <- na.omit(data.frame( y=dat[,ii], score=score, group=group ))
        mod1 <- stats::glm( y  ~ score, data=dat.ii, family='binomial')
        mod2 <- stats::glm( y  ~ score + group, data=dat.ii, family='binomial')
        mod3 <- stats::glm( y  ~ score + group + score*group, data=dat.ii,
                                    family='binomial')

        h1 <- data.frame( item=colnames(dat)[ii], N=sum(1-is.na(dat[,ii]), na.rm=TRUE))
        h1$R <- min(group)
        h1$F <- max(group)
        h1$nR <- sum(  ( 1- is.na( dat[,ii] ) )* (1-group), na.rm=T)
        h1$nF <- sum(  ( 1- is.na( dat[,ii] ) )* (group), na.rm=T)
        h1$p <- mean(  dat[,ii], na.rm=TRUE)
        a1 <- stats::aggregate( dat[,ii], list(group), mean, na.rm=T )[,2]
        h1$pR <- a1[1]
        h1$pF <- a1[2]
        h1$pdiff <- h1$pR - h1$pF
        h1$pdiff.adj <- NA
        h1$uniformDIF <- mod2$coef[3]
        h1$se.uniformDIF <- sqrt( diag( stats::vcov(mod2)) )[3]
        h1$t.uniformDIF <- mod2$coef[3] / sqrt( diag( stats::vcov(mod2) ) )[3]
        h1$sig.uniformDIF <- ''
        if ( ! is.na( h1$t.uniformDIF ) ){
            if ( h1$t.uniformDIF > quant ){ h1$sig.uniformDIF <- '+' }
            if ( h1$t.uniformDIF < - quant ){ h1$sig.uniformDIF <- '-' }
        }
        h1$DIF.ETS <- ''
        #****
        # nonuniform DIF
        h1$nonuniformDIF <- mod3$coef[4]
        h1$se.nonuniformDIF <- sqrt( diag( stats::vcov(mod3)) )[4]
        h1$t.nonuniformDIF <- mod3$coef[4] / sqrt( diag( stats::vcov(mod3) ) )[4]
        h1$sig.nonuniformDIF <- ''
        if ( ! is.na( h1$t.nonuniformDIF ) ){
            if ( h1$t.nonuniformDIF > quant ){ h1$sig.nonuniformDIF <- '+' }
            if ( h1$t.nonuniformDIF < - quant ){ h1$sig.nonuniformDIF <- '-' }
        }
        matr <- rbind( matr, h1 )
        cat( ii, ' ' )
        utils::flush.console()
        if ( ii %% 15==0 ){ cat('\n') }
    }
    cat('\n')
    # include variable of adjusted p values
    matr[, 'pdiff.adj' ] <- matr$pR - matr$pF - mean( matr$pR - matr$pF  )
    ind1 <- grep( 'ETS', colnames(matr) )
    #***
    # DIF ETS classifiaction
    stat <- abs( matr$uniformDIF )
    stat.low <- stat - quant * matr$se.uniformDIF
    matr[,'DIF.ETS'] <- 'B'
    # DIF classification C
    ind <- which( ( stat > .64 ) & ( stat.low > .43 ) )
    if (length(ind) > 0){ matr[ind, 'DIF.ETS'] <- 'C' }
    # DIF classification A
    ind <- which( ( stat < .43 ) | ( stat.low < 0 ) )
    if (length(ind) > 0){
        matr[ind, 'DIF.ETS'] <- 'A'
    }
    matr$DIF.ETS <- paste0( matr$DIF.ETS, ifelse( matr$uniformDIF > 0, '+', '-' ))

    #**** calculation of DIF variance
    dif1 <- dif.variance( dif=matr$uniformDIF, se.dif=matr$se.uniformDIF )
    matr <- data.frame( matr[, seq(1,ind1)], uniform.EBDIF=dif1$eb.dif,
                    DIF.SD=dif1$unweighted.DIFSD, matr[, seq(ind1+1, ncol(matr)) ] )
    cat( paste0('\nDIF SD=', round(dif1$unweighted.DIFSD, 3 ) ), '\n')
    # sorting of the items
    g1 <- rank( matr$uniformDIF )
    matr <- data.frame( itemnr=1L:nrow(matr), sortDIFindex=g1, matr )
    return(matr)
}

Try the sirt package in your browser

Any scripts or data that you put into this service are public.

sirt documentation built on Nov. 5, 2025, 6:48 p.m.