Nothing
## File Name: rm.facets.R
## File Version: 4.641
#################################################################
# Facets Model for Raters:
# MML estimation
rm.facets <- function( dat, pid=NULL, rater=NULL,
Qmatrix=NULL, theta.k=seq(-9,9,len=30),
est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, rater_item_int=FALSE,
est.mean=FALSE, tau.item.fixed=NULL, a.item.fixed=NULL, b.rater.fixed=NULL, a.rater.fixed=NULL,
b.rater.center=2, a.rater.center=2, a.item.center=2, a_lower=.05, a_upper=10,
reference_rater=NULL, max.b.increment=1, numdiff.parm=.00001, maxdevchange=.10,
globconv=.001, maxiter=1000, msteps=4, mstepconv=.001, PEM=FALSE, PEM_itermax=maxiter)
{
CALL <- match.call()
s1 <- Sys.time()
skillspace <- "normal"
dat0 <- dat <- as.matrix(dat)
rater0 <- rater
if ( is.null(rater)){
rater <- rep(1,nrow(dat))
est.b.rater <- FALSE
est.a.rater <- FALSE
}
if ( is.null(pid)){
pid <- seq(1,nrow(dat) )
}
pcm.param <- FALSE
theta.k0 <- theta.k
pi.k <- sirt_dnorm_discrete(x=theta.k, mean=0, sd=1)
# process data
res <- rm_proc_data( dat=dat, rater=rater, pid=pid, rater_item_int=rater_item_int,
reference_rater=reference_rater)
procdata <- res
dat2 <- as.matrix(res$dat2)
dat2.resp <- as.matrix(res$dat2.resp)
rater.index1 <- res$rater.index
dataproc.vars <- res$dataproc.vars
VV <- res$VV
RR <- res$RR
item.index <- res$dataproc.vars$item.index
rater.index <- res$dataproc.vars$rater.index
dat2.ind.resp <- res$dat2.ind.resp
rater <- res$rater
dat <- res$dat
pid <- res$pid
reference_rater <- res$reference_rater
deviance.history <- rep(NA, maxiter)
#--- fixed values for raters
res <- rm_proc_fixed_values_reference_rater( rater.index1=rater.index1,
b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed,
rater_item_int=rater_item_int, reference_rater=reference_rater,
est.b.rater=est.b.rater, est.a.rater=est.a.rater )
a.rater.fixed <- res$a.rater.fixed
b.rater.fixed <- res$b.rater.fixed
#-- maximum categories
maxK <- sirt_colMaxs(x=dat)
K <- max( maxK )
if ( is.null(Qmatrix) ){
Qmatrix <- matrix( 1:K, nrow=VV, ncol=K, byrow=TRUE)
}
TP <- length(theta.k)
I <- VV*RR
# center parameters
if ( ! is.null( b.rater.fixed) ){
b.rater.center <- 0
}
if ( ! is.null( a.rater.fixed) ){
a.rater.center <- 0
}
if ( ! is.null( a.item.fixed) ){
a.item.center <- 0
}
if ( skillspace=="loglinear" ){
est.mean <- TRUE
}
# define constraints on tau.item parameters
# if not all categories are observed
tau.item.fixed_val <- tau.item.fixed
tau.item.fixed <- NULL
if ( min(maxK) < K ){
tau.item.fixed <- rm_determine_fixed_tau_parameters( K=K, maxK=maxK, VV=VV )
}
# starting values for item difficulties
b.item <- - stats::qlogis( colMeans( dat, na.rm=TRUE ) / maxK )
if ( ! pcm.param ){
b.item <- 0*b.item
}
#--- tau parameters
tau.item <- matrix( 0, nrow=VV, ncol=K )
rownames(tau.item) <- colnames(dat)
tau.item <- matrix( seq( -2, 2, len=K ), nrow=VV, ncol=K, byrow=TRUE )
#--- rater parameters
M1 <- colSums( dat2 ) / colSums( dat2.resp )
N <- colSums( dat2.resp )
N <- stats::aggregate( N, list( rater.index ), sum, na.rm=TRUE )[,2]
M1 <- stats::aggregate( M1, list( rater.index ), mean, na.rm=TRUE )[,2]
b.rater <- - stats::qlogis( M1 / K )
b.rater <- b.rater - mean( b.rater )
a.item <- rep(1,VV)
a.rater <- rep(1,RR)
if ( ! est.b.rater ){
b.rater <- rep(0,RR)
}
# init standard errors
se.b.rater <- NA*b.rater
se.a.rater <- NA*a.rater
se.a.item <- NA*a.item
#-- preliminaries PEM acceleration
if (PEM){
res <- rm_facets_pem_inits( tau.item=tau.item, a.item=a.item, a.rater=a.rater,
b.rater=b.rater, skillspace=skillspace, PEM=PEM, a.item.fixed=a.item.fixed,
est.a.item=est.a.item )
PEM <- res$PEM
pem_pars <- res$pem_pars
pem_parameter_index <- res$pem_parameter_index
pem_parameter_sequence <- res$pem_parameter_sequence
}
# inits
iter <- 0
dev0 <- dev <- 0
conv <- devchange <- 1000
sigma <- 1
disp <- "...........................................................\n"
b.rater.incr <- max.b.increment
tau.item.incr <- max.b.increment
active <- TRUE
active <- FALSE
#****************************************************
# start EM algorithm
while( ( ( maxdevchange < devchange ) | (globconv < conv) ) &
( iter < maxiter ) ){
cat(disp)
cat("Iteration", iter+1, " ", paste( Sys.time() ), "\n" )
# previous values
b.item0 <- b.item
b.rater0 <- b.rater
tau.item0 <- tau.item
dev0 <- dev
sigma0 <- sigma
a.item0 <- a.item
a.rater0 <- a.rater
# calculate probabilities
probs <- rm_facets_calcprobs( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
tau.item=tau.item, VV=VV, K=K,
I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
rater.index=rater.index, theta.k=theta.k, RR=RR )
# calculate posterior
res <- rm_posterior( dat2=dat2, dat2.resp=dat2.resp, TP=TP, pi.k=pi.k, K=K, I=I,
probs=probs, dat2.ind.resp=dat2.ind.resp )
f.yi.qk <- res$f.yi.qk
f.qk.yi <- res$f.qk.yi
n.ik <- res$n.ik
N.ik <- res$N.ik
pi.k <- res$pi.k
ll <- res$ll
#--- estimate b.rater parameter
if( est.b.rater ){
res <- rm_facets_est_b_rater( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix, tau.item=tau.item, VV=VV, K=K,
I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
rater.index=rater.index, n.ik=n.ik, numdiff.parm=numdiff.parm,
max.b.increment=1, theta.k=theta.k, msteps=msteps,
mstepconv=mstepconv, b.rater.center=b.rater.center,
b.rater.fixed=b.rater.fixed )
b.rater <- res$b.rater
se.b.rater <- res$se.b.rater
b.rater.incr <- abs( b.rater0 - b.rater )
# b.rater.incr <- 1
}
#--- estimate tau.item parameters
res <- rm_facets_est_tau_item( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix, tau.item=tau.item, VV=VV, K=K,
I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
rater.index=rater.index, n.ik=n.ik, numdiff.parm=numdiff.parm,
max.b.increment=1, theta.k=theta.k, msteps=msteps,
mstepconv=mstepconv, tau.item.fixed=tau.item.fixed,
tau.item.fixed_val=tau.item.fixed_val )
tau.item <- res$tau.item
se.tau.item <- res$se.tau.item
tau.item.incr <- abs( tau.item0 - tau.item )
# tau.item.incr <- 1
#--- estimate a.item parameter
if (est.a.item){
res <- rm_facets_est_a_item( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
n.ik=n.ik, numdiff.parm=numdiff.parm, max.b.increment=1, theta.k=theta.k, msteps=msteps,
mstepconv=mstepconv, a.item.center=a.item.center, a.item.fixed=a.item.fixed, a_lower=a_lower,
a_upper=a_upper )
a.item <- res$a.item
se.a.item <- res$se.a.item
}
#--- estimate a.rater parameter
if (est.a.rater){
res <- rm_facets_est_a_rater( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
n.ik=n.ik, numdiff.parm=numdiff.parm, max.b.increment=1, theta.k=theta.k, msteps=msteps,
mstepconv=mstepconv, a.rater.center=a.rater.center, a.rater.fixed=a.rater.fixed, a_lower=a_lower,
a_upper=a_upper )
a.rater <- res$a.rater
se.a.rater <- res$se.a.rater
}
utils::flush.console()
#-- update distribution
res <- rm_smooth_distribution( theta.k=theta.k, pi.k=pi.k, est.mean=est.mean, skillspace=skillspace )
pi.k <- res$pi.k
mu <- res$mu
sigma <- res$sigma
#-- PEM acceleration
if (PEM){
res <- rm_facets_pem_acceleration( iter=iter, pem_parameter_index=pem_parameter_index,
pem_parameter_sequence=pem_parameter_sequence, a.rater=a.rater, Qmatrix=Qmatrix,
tau.item=tau.item, VV=VV, K=K, I=I, TP=TP, a.item=a.item, b.item=b.item, b.rater=b.rater,
item.index=item.index, rater.index=rater.index, theta.k=theta.k, RR=RR, dat2=dat2,
dat2.resp=dat2.resp, pi.k=pi.k, dat2.ind.resp=dat2.ind.resp, ll=ll, mu=mu, sigma=sigma,
pem_pars=pem_pars, a_center_type=a.rater.center, PEM_itermax=PEM_itermax,
b.rater.center=b.rater.center, a.rater.center=a.rater.center,
a.item.center=a.item.center, a_lower=a_lower, a_upper=a_upper )
ll_pem <- res$ll
pem_parameter_sequence <- res$pem_parameter_sequence
a.rater <- res$a.rater
b.rater <- res$b.rater
a.item <- res$a.item
tau.item <- res$tau.item
pi.k <- res$pi.k
mu <- res$mu
sigma <- res$sigma
PEM <- res$PEM
}
#-- save deviance values
deviance.history[iter+1] <- dev <- -2*ll
#-- convergence criteria
conv <- max( abs(b.rater-b.rater0), abs( a.rater-a.rater0), abs( tau.item0-tau.item), abs( a.item - a.item0 ) )
iter <- iter+1
devchange <- abs( ( dev - dev0 ) / dev0 )
#-- print progress
res <- rm_facets_print_progress( dev=dev, dev0=dev0, b.rater=b.rater, b.rater0=b.rater0,
a.rater=a.rater, a.rater0=a.rater0,
tau.item=tau.item, tau.item0=tau.item0, a.item=a.item, a.item0=a.item0, mu=mu, sigma=sigma,
iter=iter )
}
#*********
# arrange OUTPUT
#---
ic <- rm_facets_ic( dev=dev, dat2=dat2, VV=VV, RR=RR, maxK=maxK, a.item.center=a.item.center,
est.a.item=est.a.item, est.b.rater=est.b.rater, est.a.rater=est.a.rater,
est.mean=est.mean, b.rater.center=b.rater.center, a.rater.center=a.rater.center,
b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed,
tau.item.fixed_val=tau.item.fixed_val, a.item.fixed=a.item.fixed )
#---
# person
res <- rm_facets_postproc_person( dat2=dat2, dat2.resp=dat2.resp, procdata=procdata, maxK=maxK, RR=RR, theta.k=theta.k,
f.qk.yi=f.qk.yi )
person <- res$person
EAP.rel <- res$EAP.rel
#---
# item
if ( ! is.null(tau.item.fixed) ){
tau.item[ tau.item.fixed[,1:2,drop=FALSE] ] <- NA
se.tau.item[ tau.item.fixed[,1:2,drop=FALSE] ] <- NA
}
item <- data.frame( "item"=colnames(dat),
"N"=colSums( 1-is.na(dat)),
"M"=colMeans( dat, na.rm=TRUE ) )
for (kk in 1:K){
item[, paste0("tau.Cat",kk) ] <- tau.item[,kk]
}
item$a <- a.item
delta.item <- pcm.conversion(tau.item)$delta
item$delta <- delta.item
item$delta_cent <- rm_facets_center_value(x=item$delta, value=0)
cat("*********************************\n")
cat("Item Parameters\n")
sirt_summary_print_objects(obji=item, digits=3, from=2)
#--- table rater parameters
rater <- rm_facets_postproc_rater_parameters( rater.index=rater.index, dat2=dat2,
dat2.resp=dat2.resp, b.rater=b.rater,
a.rater=a.rater, rater.index1=rater.index1, rater_item_int=rater_item_int )
#--- dimnames probs
dimnames(probs)[[1]] <- colnames(dat2)
#--- expanded item parameters
ipars.dat2 <- rm_facets_itempar_expanded( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
theta.k=theta.k, RR=RR )
cat("*********************************\n")
cat("Rater Parameters\n")
sirt_summary_print_objects(obji=rater, digits=3, from=2)
cat("*********************************\n")
cat("EAP Reliability=", round(EAP.rel,3), "\n")
s2 <- Sys.time()
res <- list( deviance=dev, ic=ic, item=item, rater=rater, person=person, EAP.rel=EAP.rel, mu=mu,
sigma=sigma, theta.k=theta.k, pi.k=pi.k, G=1, tau.item=tau.item, se.tau.item=se.tau.item,
a.item=a.item, se.a.item=se.a.item, delta.item=delta.item, b.rater=b.rater,
se.b.rater=se.b.rater, a.rater=a.rater, se.a.rater=se.a.rater, f.yi.qk=f.yi.qk,
f.qk.yi=f.qk.yi, probs=probs, n.ik=n.ik, maxK=maxK, procdata=procdata, iter=iter, s1=s1, s2=s2,
tau.item.fixed=tau.item.fixed, item.index=item.index, rater.index=rater.index,
ipars.dat2=ipars.dat2, rater_item_int=rater_item_int, CALL=CALL,
deviance.history=deviance.history )
class(res) <- "rm.facets"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.