R/rm.facets.R

Defines functions rm.facets

Documented in rm.facets

## File Name: rm.facets.R
## File Version: 4.641

#################################################################
# Facets Model for Raters:
# MML estimation
rm.facets <- function( dat, pid=NULL, rater=NULL,
    Qmatrix=NULL, theta.k=seq(-9,9,len=30),
    est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, rater_item_int=FALSE,
    est.mean=FALSE, tau.item.fixed=NULL, a.item.fixed=NULL, b.rater.fixed=NULL, a.rater.fixed=NULL,
    b.rater.center=2, a.rater.center=2, a.item.center=2,  a_lower=.05, a_upper=10,
    reference_rater=NULL, max.b.increment=1, numdiff.parm=.00001, maxdevchange=.10,
    globconv=.001, maxiter=1000, msteps=4, mstepconv=.001, PEM=FALSE, PEM_itermax=maxiter)
{

    CALL <- match.call()
    s1 <- Sys.time()

    skillspace <- "normal"
    dat0 <- dat <- as.matrix(dat)
    rater0 <- rater
    if ( is.null(rater)){
        rater <- rep(1,nrow(dat))
        est.b.rater <- FALSE
        est.a.rater <- FALSE
    }
    if ( is.null(pid)){
        pid <- seq(1,nrow(dat) )
    }
    pcm.param <- FALSE
    theta.k0 <- theta.k
    pi.k <- sirt_dnorm_discrete(x=theta.k, mean=0, sd=1)

    # process data
    res <- rm_proc_data( dat=dat, rater=rater, pid=pid, rater_item_int=rater_item_int,
                            reference_rater=reference_rater)
    procdata <- res
    dat2 <- as.matrix(res$dat2)
    dat2.resp <- as.matrix(res$dat2.resp)
    rater.index1 <- res$rater.index
    dataproc.vars <- res$dataproc.vars
    VV <- res$VV
    RR <- res$RR
    item.index <- res$dataproc.vars$item.index
    rater.index <- res$dataproc.vars$rater.index
    dat2.ind.resp <- res$dat2.ind.resp
    rater <- res$rater
    dat <- res$dat
    pid <- res$pid
    reference_rater <- res$reference_rater

    deviance.history <- rep(NA, maxiter)

    #--- fixed values for raters
    res <- rm_proc_fixed_values_reference_rater( rater.index1=rater.index1,
                b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed,
                rater_item_int=rater_item_int, reference_rater=reference_rater,
                est.b.rater=est.b.rater, est.a.rater=est.a.rater )
    a.rater.fixed <- res$a.rater.fixed
    b.rater.fixed <- res$b.rater.fixed

    #-- maximum categories
    maxK <- sirt_colMaxs(x=dat)

    K <- max( maxK )
    if ( is.null(Qmatrix) ){
        Qmatrix <- matrix( 1:K, nrow=VV, ncol=K, byrow=TRUE)
    }
    TP <- length(theta.k)
    I <- VV*RR

    # center parameters
    if ( ! is.null( b.rater.fixed) ){
        b.rater.center <- 0
    }
    if ( ! is.null( a.rater.fixed) ){
        a.rater.center <- 0
    }
    if ( ! is.null( a.item.fixed) ){
        a.item.center <- 0
    }

    if ( skillspace=="loglinear" ){
        est.mean <- TRUE
    }

    # define constraints on tau.item parameters
    # if not all categories are observed
    tau.item.fixed_val <- tau.item.fixed
    tau.item.fixed <- NULL
    if ( min(maxK) < K ){
        tau.item.fixed <- rm_determine_fixed_tau_parameters( K=K, maxK=maxK, VV=VV )
    }

    # starting values for item difficulties
    b.item <- - stats::qlogis( colMeans( dat, na.rm=TRUE ) / maxK  )
    if ( ! pcm.param ){
        b.item <- 0*b.item
    }
    #--- tau parameters
    tau.item <- matrix( 0, nrow=VV, ncol=K )
    rownames(tau.item) <- colnames(dat)
    tau.item <- matrix( seq( -2, 2, len=K ), nrow=VV, ncol=K, byrow=TRUE )
    #--- rater parameters
    M1 <- colSums( dat2 ) / colSums( dat2.resp )
    N <- colSums( dat2.resp )
    N <- stats::aggregate( N, list( rater.index ), sum, na.rm=TRUE )[,2]
    M1 <- stats::aggregate( M1, list( rater.index ), mean, na.rm=TRUE )[,2]
    b.rater <- - stats::qlogis( M1 / K )
    b.rater <- b.rater - mean( b.rater )
    a.item <- rep(1,VV)
    a.rater <- rep(1,RR)
    if ( ! est.b.rater ){
        b.rater <- rep(0,RR)
    }

    # init standard errors
    se.b.rater <- NA*b.rater
    se.a.rater <- NA*a.rater
    se.a.item <- NA*a.item

    #-- preliminaries PEM acceleration
    if (PEM){
        res <- rm_facets_pem_inits( tau.item=tau.item, a.item=a.item, a.rater=a.rater,
                        b.rater=b.rater, skillspace=skillspace, PEM=PEM, a.item.fixed=a.item.fixed,
                        est.a.item=est.a.item )
        PEM <- res$PEM
        pem_pars <- res$pem_pars
        pem_parameter_index <- res$pem_parameter_index
        pem_parameter_sequence <- res$pem_parameter_sequence
    }

    # inits
    iter <- 0
    dev0 <- dev <- 0
    conv <- devchange <- 1000
    sigma <- 1
    disp <- "...........................................................\n"

    b.rater.incr <- max.b.increment
    tau.item.incr  <- max.b.increment

active <- TRUE
active <- FALSE

    #****************************************************
    # start EM algorithm
    while( ( ( maxdevchange < devchange ) | (globconv < conv) ) &
            ( iter < maxiter )    ){
        cat(disp)
        cat("Iteration", iter+1, "   ", paste( Sys.time() ), "\n" )

        # previous values
        b.item0 <- b.item
        b.rater0 <- b.rater
        tau.item0 <- tau.item
        dev0 <- dev
        sigma0 <- sigma
        a.item0 <- a.item
        a.rater0 <- a.rater
        # calculate probabilities
        probs <- rm_facets_calcprobs( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
                        tau.item=tau.item, VV=VV, K=K,
                        I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
                        rater.index=rater.index, theta.k=theta.k, RR=RR )
        # calculate posterior
        res <- rm_posterior( dat2=dat2, dat2.resp=dat2.resp, TP=TP, pi.k=pi.k, K=K, I=I,
                    probs=probs, dat2.ind.resp=dat2.ind.resp )
        f.yi.qk <- res$f.yi.qk
        f.qk.yi <- res$f.qk.yi
        n.ik <- res$n.ik
        N.ik <- res$N.ik
        pi.k <- res$pi.k
        ll <- res$ll

        #--- estimate b.rater parameter
        if( est.b.rater ){
            res <- rm_facets_est_b_rater( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix, tau.item=tau.item, VV=VV, K=K,
                            I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
                            rater.index=rater.index, n.ik=n.ik, numdiff.parm=numdiff.parm,
                            max.b.increment=1, theta.k=theta.k, msteps=msteps,
                            mstepconv=mstepconv, b.rater.center=b.rater.center,
                            b.rater.fixed=b.rater.fixed )
            b.rater <- res$b.rater
            se.b.rater <- res$se.b.rater
            b.rater.incr <- abs( b.rater0 - b.rater )
            # b.rater.incr <- 1
        }

        #--- estimate tau.item parameters
        res <- rm_facets_est_tau_item( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix, tau.item=tau.item, VV=VV, K=K,
                    I=I, TP=TP, a.item=a.item, a.rater=a.rater, item.index=item.index,
                    rater.index=rater.index, n.ik=n.ik, numdiff.parm=numdiff.parm,
                    max.b.increment=1, theta.k=theta.k, msteps=msteps,
                    mstepconv=mstepconv, tau.item.fixed=tau.item.fixed,
                    tau.item.fixed_val=tau.item.fixed_val )
        tau.item <- res$tau.item
        se.tau.item <- res$se.tau.item
        tau.item.incr  <- abs( tau.item0 - tau.item )
        # tau.item.incr  <- 1

        #--- estimate a.item parameter
        if (est.a.item){
            res <- rm_facets_est_a_item( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
                        tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
                        a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
                        n.ik=n.ik, numdiff.parm=numdiff.parm, max.b.increment=1, theta.k=theta.k, msteps=msteps,
                        mstepconv=mstepconv, a.item.center=a.item.center, a.item.fixed=a.item.fixed, a_lower=a_lower,
                        a_upper=a_upper )
            a.item <- res$a.item
            se.a.item <- res$se.a.item
        }

        #--- estimate a.rater parameter
        if (est.a.rater){
            res <- rm_facets_est_a_rater( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
                        tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
                        a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
                        n.ik=n.ik, numdiff.parm=numdiff.parm, max.b.increment=1, theta.k=theta.k, msteps=msteps,
                        mstepconv=mstepconv, a.rater.center=a.rater.center, a.rater.fixed=a.rater.fixed, a_lower=a_lower,
                        a_upper=a_upper )
            a.rater <- res$a.rater
            se.a.rater <- res$se.a.rater
        }
        utils::flush.console()

        #-- update distribution
        res <- rm_smooth_distribution( theta.k=theta.k, pi.k=pi.k, est.mean=est.mean, skillspace=skillspace )
        pi.k <- res$pi.k
        mu <- res$mu
        sigma <- res$sigma
        #-- PEM acceleration
        if (PEM){
            res <- rm_facets_pem_acceleration( iter=iter, pem_parameter_index=pem_parameter_index,
                        pem_parameter_sequence=pem_parameter_sequence, a.rater=a.rater, Qmatrix=Qmatrix,
                        tau.item=tau.item, VV=VV, K=K, I=I, TP=TP, a.item=a.item, b.item=b.item, b.rater=b.rater,
                        item.index=item.index, rater.index=rater.index, theta.k=theta.k, RR=RR, dat2=dat2,
                        dat2.resp=dat2.resp, pi.k=pi.k, dat2.ind.resp=dat2.ind.resp, ll=ll, mu=mu, sigma=sigma,
                        pem_pars=pem_pars, a_center_type=a.rater.center, PEM_itermax=PEM_itermax,
                        b.rater.center=b.rater.center, a.rater.center=a.rater.center,
                        a.item.center=a.item.center, a_lower=a_lower, a_upper=a_upper )
            ll_pem <- res$ll
            pem_parameter_sequence <- res$pem_parameter_sequence
            a.rater <- res$a.rater
            b.rater <- res$b.rater
            a.item <- res$a.item
            tau.item <- res$tau.item
            pi.k <- res$pi.k
            mu <- res$mu
            sigma <- res$sigma
            PEM <- res$PEM
        }

        #-- save deviance values
        deviance.history[iter+1] <- dev <- -2*ll

        #-- convergence criteria
        conv <- max( abs(b.rater-b.rater0), abs( a.rater-a.rater0), abs( tau.item0-tau.item), abs( a.item - a.item0 ) )
        iter <- iter+1
        devchange <- abs( ( dev - dev0 ) / dev0  )

        #-- print progress
        res <- rm_facets_print_progress( dev=dev, dev0=dev0, b.rater=b.rater, b.rater0=b.rater0,
                    a.rater=a.rater, a.rater0=a.rater0,
                    tau.item=tau.item, tau.item0=tau.item0, a.item=a.item, a.item0=a.item0, mu=mu, sigma=sigma,
                    iter=iter )
    }

    #*********
    # arrange OUTPUT
    #---
    ic <- rm_facets_ic( dev=dev, dat2=dat2, VV=VV, RR=RR, maxK=maxK, a.item.center=a.item.center,
                est.a.item=est.a.item, est.b.rater=est.b.rater, est.a.rater=est.a.rater,
                est.mean=est.mean, b.rater.center=b.rater.center, a.rater.center=a.rater.center,
                b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed,
                tau.item.fixed_val=tau.item.fixed_val, a.item.fixed=a.item.fixed )
    #---
    # person
    res <- rm_facets_postproc_person( dat2=dat2, dat2.resp=dat2.resp, procdata=procdata, maxK=maxK, RR=RR, theta.k=theta.k,
                f.qk.yi=f.qk.yi )
    person <- res$person
    EAP.rel <- res$EAP.rel

    #---
    # item
    if ( ! is.null(tau.item.fixed) ){
        tau.item[ tau.item.fixed[,1:2,drop=FALSE] ] <- NA
        se.tau.item[ tau.item.fixed[,1:2,drop=FALSE] ] <- NA
    }
    item <- data.frame( "item"=colnames(dat),
            "N"=colSums( 1-is.na(dat)),
            "M"=colMeans( dat, na.rm=TRUE ) )
    for (kk in 1:K){
        item[, paste0("tau.Cat",kk) ] <- tau.item[,kk]
    }
    item$a <- a.item

    delta.item <- pcm.conversion(tau.item)$delta
    item$delta <- delta.item
    item$delta_cent <- rm_facets_center_value(x=item$delta, value=0)

    cat("*********************************\n")
    cat("Item Parameters\n")
    sirt_summary_print_objects(obji=item, digits=3, from=2)

    #--- table rater parameters
    rater <- rm_facets_postproc_rater_parameters( rater.index=rater.index, dat2=dat2,
                    dat2.resp=dat2.resp, b.rater=b.rater,
                    a.rater=a.rater, rater.index1=rater.index1, rater_item_int=rater_item_int )

    #--- dimnames probs
    dimnames(probs)[[1]] <- colnames(dat2)

    #--- expanded item parameters
    ipars.dat2 <- rm_facets_itempar_expanded( b.item=b.item, b.rater=b.rater, Qmatrix=Qmatrix,
                        tau.item=tau.item, VV=VV, K=K, I=I, TP=TP,
                        a.item=a.item, a.rater=a.rater, item.index=item.index, rater.index=rater.index,
                        theta.k=theta.k, RR=RR )

    cat("*********************************\n")
    cat("Rater Parameters\n")
    sirt_summary_print_objects(obji=rater, digits=3, from=2)

    cat("*********************************\n")
    cat("EAP Reliability=", round(EAP.rel,3), "\n")

    s2 <- Sys.time()
    res <-  list( deviance=dev, ic=ic, item=item, rater=rater, person=person, EAP.rel=EAP.rel, mu=mu,
                    sigma=sigma, theta.k=theta.k, pi.k=pi.k, G=1, tau.item=tau.item, se.tau.item=se.tau.item,
                    a.item=a.item, se.a.item=se.a.item, delta.item=delta.item, b.rater=b.rater,
                    se.b.rater=se.b.rater, a.rater=a.rater, se.a.rater=se.a.rater, f.yi.qk=f.yi.qk,
                    f.qk.yi=f.qk.yi, probs=probs, n.ik=n.ik, maxK=maxK, procdata=procdata, iter=iter, s1=s1, s2=s2,
                    tau.item.fixed=tau.item.fixed, item.index=item.index, rater.index=rater.index,
                    ipars.dat2=ipars.dat2, rater_item_int=rater_item_int, CALL=CALL,
                    deviance.history=deviance.history )
    class(res) <- "rm.facets"
    return(res)
}

Try the sirt package in your browser

Any scripts or data that you put into this service are public.

sirt documentation built on May 29, 2024, 8:43 a.m.