Nothing
simMsAbund <- function(J.x, J.y, n.rep, n.rep.max, n.sp, beta, kappa, tau.sq, mu.RE = list(),
offset = 1, sp = FALSE, cov.model, svc.cols = 1,
sigma.sq, phi, nu, family = 'Poisson',
factor.model = FALSE, n.factors, z, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Check function inputs -------------------------------------------------
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# n.rep -----------------------------
if (missing(n.rep)) {
stop("error: n.rep must be specified.")
}
if (length(n.rep) != J) {
stop(paste("error: n.rep must be a vector of length ", J, sep = ''))
}
if (missing(n.rep.max)) {
n.rep.max <- max(n.rep)
}
# family ------------------------------
if (! (family %in% c('NB', 'Poisson', 'Gaussian', 'zi-Gaussian'))) {
stop("error: family must be one of: NB (negative binomial), Poisson, 'Gaussian', or 'zi-Gaussian'")
}
# n.sp ---------------------------------
if (missing(n.sp)) {
stop("error: n.sp must be specified")
}
if (length(n.sp) != 1) {
stop("error: n.sp must be a single numeric value.")
}
# kappa -----------------------------
if (family == 'NB') {
if (missing(kappa)) {
stop("error: kappa (overdispersion parameter) must be specified when family = 'NB'.")
}
if (length(kappa) != n.sp) {
stop(paste("error: kappa must be a numeric vector with ", n.sp, " values", sep = ''))
}
}
if (family == 'Poisson' & !missing(kappa)) {
message("overdispersion parameter (kappa) is ignored when family == 'Poisson'")
}
# tau.sq ----------------------------
if (family %in% c('Gaussian', 'zi-Gaussian')) {
if (missing(tau.sq)) {
stop('error: tau.sq (residual variance) must be specified when family is Gaussian or zi-Gaussian')
}
if (length(tau.sq) != n.sp) {
stop(paste("error: tau.sq must be a numeric vector with ", n.sp, " values", sep = ''))
}
}
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified")
}
if (!is.matrix(beta)) {
stop(paste("error: beta must be a numeric matrix with ", n.sp, " rows", sep = ''))
}
if (nrow(beta) != n.sp) {
stop(paste("error: beta must be a numeric matrix with ", n.sp, " rows", sep = ''))
}
# Check spatial stuff ---------------
if (sp & !factor.model) {
N.p.svc <- n.sp * length(svc.cols)
# sigma.sq --------------------------
if (missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if (length(sigma.sq) != N.p.svc) {
stop(paste("error: sigma.sq must be a vector of length ", N.p.svc, sep = ''))
}
# phi -------------------------------
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != N.p.svc) {
stop(paste("error: phi must be a vector of length ", N.p.svc, sep = ''))
}
}
if (sp) {
# Covariance model ----------------
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
}
p.svc <- length(svc.cols)
if (factor.model) {
# n.factors -----------------------
if (missing(n.factors)) {
stop("error: n.factors must be specified when factor.model = TRUE")
}
q.p.svc <- n.factors * length(svc.cols)
if (sp) {
if (!missing(sigma.sq)) {
message("sigma.sq is specified but will be set to 1 for spatial latent factor model")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if (length(phi) != q.p.svc) {
stop(paste("error: phi must be a vector of length ", q.p.svc, sep = ''))
}
}
if (!sp & length(svc.cols) > 1) {
stop("error: length(svc.cols) > 1 when sp = FALSE. Set sp = TRUE to simulate data with spatially-varying coefficients")
}
}
# mu.RE ----------------------------
names(mu.RE) <- tolower(names(mu.RE))
if (!is.list(mu.RE)) {
stop("error: if specified, mu.RE must be a list with tags 'levels' and 'sigma.sq.mu'")
}
if (length(names(mu.RE)) > 0) {
if (!'sigma.sq.mu' %in% names(mu.RE)) {
stop("error: sigma.sq.mu must be a tag in mu.RE with values for the abundance random effect variances")
}
if (!'levels' %in% names(mu.RE)) {
stop("error: levels must be a tag in mu.RE with the number of random effect levels for each abundance random intercept.")
}
if (!'beta.indx' %in% names(mu.RE)) {
mu.RE$beta.indx <- list()
for (i in 1:length(mu.RE$sigma.sq.mu)) {
mu.RE$beta.indx[[i]] <- 1
}
}
}
# z values --------------------------
if (family == 'zi-Gaussian') {
if (missing(z)) {
stop('for a zero-inflated Gaussian model, you must supply the z values (binary 0s or 1s)')
}
if (!is.matrix(z)) {
stop(paste0("z must be a matrix with ", n.sp, " rows and ", J.x * J.y, " columns."))
}
if (nrow(z) != n.sp | ncol(z) != J.x * J.y) {
stop(paste0("z must be a matrix with ", n.sp, " rows and ", J.x * J.y, " columns."))
}
}
# Subroutines -----------------------------------------------------------
# MVN
rmvn <- function(n, mu=0, V = matrix(1)) {
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Form abundance covariates (if any) ------------------------------------
J <- J.x * J.y
p.abund <- ncol(beta)
X <- array(NA, dim = c(J, n.rep.max, p.abund))
X[, , 1] <- 1
# Get index of surveyed replicates for each site.
rep.indx <- list()
for (j in 1:J) {
rep.indx[[j]] <- sample(1:n.rep.max, n.rep[j], replace = FALSE)
}
if (p.abund > 1) {
for (i in 2:p.abund) {
for (j in 1:J) {
X[j, rep.indx[[j]], i] <- rnorm(n.rep[j])
}
} # i
}
# Simulate latent (spatial) random effect for each species --------------
# Matrix of spatial locations
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords <- as.matrix(expand.grid(s.x, s.y))
w.star <- vector(mode = "list", length = p.svc)
w <- vector(mode = "list", length = p.svc)
lambda <- vector(mode = "list", length = p.svc)
# Form spatial process for each spatially-varying covariate
for (i in 1:p.svc) {
w.star[[i]] <- matrix(0, nrow = n.sp, ncol = J)
if (factor.model) {
lambda[[i]] <- matrix(rnorm(n.sp * n.factors, 0, 0.5), n.sp, n.factors)
# Set diagonals to 1
diag(lambda[[i]]) <- 1
# Set upper tri to 0
lambda[[i]][upper.tri(lambda[[i]])] <- 0
w[[i]] <- matrix(NA, n.factors, J)
if (sp) { # sfMsPGOcc
if (cov.model == 'matern') {
# Assume all spatial parameters ordered by svc first, then factor
theta <- cbind(phi[((i - 1) * n.factors + 1):(i * n.factors)],
nu[((i - 1) * n.factors + 1):(i * n.factors)])
} else {
theta <- as.matrix(phi[((i - 1) * n.factors + 1):(i * n.factors)])
}
for (ll in 1:n.factors) {
Sigma <- mkSpCov(coords, as.matrix(1), as.matrix(0),
theta[ll, ], cov.model)
w[[i]][ll, ] <- rmvn(1, rep(0, J), Sigma)
}
} else { # lsMsPGOcc
for (ll in 1:n.factors) {
w[[i]][ll, ] <- rnorm(J)
} # ll
}
for (j in 1:J) {
w.star[[i]][, j] <- lambda[[i]] %*% w[[i]][, j]
}
} else {
if (sp) { # spMsPGOcc
lambda <- NA
if (cov.model == 'matern') {
theta <- cbind(phi[((i - 1) * n.sp + 1):(i * n.sp)],
nu[((i - 1) * n.sp + 1):(i * n.sp)])
} else {
theta <- as.matrix(phi[((i - 1) * n.sp + 1):(i * n.sp)])
}
# Spatial random effects for each species
for (ll in 1:n.sp) {
Sigma <- mkSpCov(coords, as.matrix(sigma.sq[(i - 1) * n.sp + ll]), as.matrix(0),
theta[ll, ], cov.model)
w.star[[i]][ll, ] <- rmvn(1, rep(0, J), Sigma)
}
}
# For naming consistency
w <- w.star
lambda <- NA
}
} # i (spatially-varying coefficient)
# Design matrix for spatially-varying coefficients
X.w <- X[, , svc.cols, drop = FALSE]
# Random effects --------------------------------------------------------
if (length(mu.RE) > 0) {
p.abund.re <- length(unlist(mu.RE$beta.indx))
tmp <- sapply(mu.RE$beta.indx, length)
re.col.indx <- unlist(lapply(1:length(mu.RE$beta.indx), function(a) rep(a, tmp[a])))
sigma.sq.mu <- mu.RE$sigma.sq.mu[re.col.indx]
n.abund.re.long <- mu.RE$levels[re.col.indx]
n.abund.re <- sum(n.abund.re.long)
beta.star.indx <- rep(1:p.abund.re, n.abund.re.long)
beta.star <- matrix(0, n.sp, n.abund.re)
X.random <- X[, , unlist(mu.RE$beta.indx), drop = FALSE]
X.re <- array(NA, dim = c(J, n.rep.max, p.abund.re))
for (l in 1:p.abund.re) {
X.re[, , l] <- matrix(sample(1:mu.RE$levels[l], J * n.rep.max, replace = TRUE),
J, n.rep.max)
for (i in 1:n.sp) {
beta.star[i, which(beta.star.indx == l)] <- rnorm(mu.RE$levels[l], 0, sqrt(mu.RE$sigma.sq[l]))
}
}
for (j in 1:J) {
X.re[j, -rep.indx[[j]], ] <- NA
}
indx.mat <- X.re[, , re.col.indx, drop = FALSE]
if (p.abund.re > 1) {
for (j in 2:p.abund.re) {
X.re[, , j] <- X.re[, , j] + max(X.re[, , j - 1], na.rm = TRUE)
}
}
if (p.abund.re > 1) {
for (j in 2:p.abund.re) {
indx.mat[, , j] <- indx.mat[, , j] + max(indx.mat[, , j - 1], na.rm = TRUE)
}
}
beta.star.sites <- array(NA, c(n.sp, J, n.rep.max))
for (i in 1:n.sp) {
for (j in 1:J) {
for (k in rep.indx[[j]]) {
beta.star.sites[i, j, k] <- beta.star[i, indx.mat[j, k, ]] %*% X.random[j, k,]
}
}
}
} else {
X.re <- NA
beta.star <- NA
}
# Data formation --------------------------------------------------------
mu <- array(NA, dim = c(n.sp, J, n.rep.max))
y <- array(NA, dim = c(n.sp, J, n.rep.max))
# Offset ----------------------------
# Single value
if (length(offset) == 1) {
offset <- matrix(offset, J, n.rep.max)
} else if (length(dim(offset)) == 1) { # Value for each site
if (length(offset) != J) {
stop(paste0("offset must be a single value, vector of length ", J, " or a matrix with ",
J, " rows and ", n.rep.max, " columns."))
}
offset <- matrix(offset, J, n.rep.max)
} else if (length(dim(offset)) == 2) { # Value for each site/obs
if (nrow(offset) != J | ncol(offset) != n.rep.max) {
stop(paste0("offset must be a single value, vector of length ", J, " or a matrix with ",
J, " rows and ", n.rep.max, " columns."))
}
}
for (j in 1:J) {
for (k in rep.indx[[j]]) {
for (i in 1:n.sp) {
if (sp | factor.model) {
w.star.curr.mat <- sapply(w.star, function(a) a[i, j])
if (length(mu.RE) > 0) {
mu[i, j, k] <- t(as.matrix(X[j, k, ])) %*% as.matrix(beta[i, ]) + X.w[j, k, ] %*% w.star.curr.mat + beta.star.sites[i, j, k]
} else {
mu[i, j, k] <- t(as.matrix(X[j, k, ])) %*% as.matrix(beta[i, ]) + X.w[j, k, ] %*% w.star.curr.mat
}
} else {
if (length(mu.RE) > 0) {
mu[i, j, k] <- t(as.matrix(X[j, k, ])) %*% as.matrix(beta[i, ]) + beta.star.sites[i, j, k]
} else {
mu[i, j, k] <- t(as.matrix(X[j, k, ])) %*% as.matrix(beta[i, ])
}
}
if (family %in% c('Poisson', 'NB')) {
mu[i, j, k] <- exp(mu[i, j, k])
}
if (family == 'NB') {
y[i, j, k] <- rnbinom(1, size = kappa[i], mu = mu[i, j, k] * offset[j, k])
}
if (family == 'Poisson') {
y[i, j, k] <- rpois(1, lambda = mu[i, j, k] * offset[j, k])
}
if (family == 'Gaussian') {
y[i, j, k] <- rnorm(1, mu[i, j, k], sqrt(tau.sq[i]))
}
if (family == 'zi-Gaussian') {
mu[i, j, k] <- mu[i, j, k] * z[i, j]
y[i, j, k] <- rnorm(1, mu[i, j, k], ifelse(z[i, j] == 1, sqrt(tau.sq[i]), 0))
}
} # i (species)
} # k (replicate)
} # j (site)
if (family %in% c('Gaussian', 'zi-Gaussian')) {
y <- y[, , 1]
mu <- mu[, , 1]
X <- X[, 1, ]
X.w <- X.w[, 1, ]
if (length(mu.RE) > 0) {
X.re <- X.re[, 1, ]
beta.star.sites <- beta.star.sites[, , 1]
}
}
return(
list(X = X, coords = coords, w = w, lambda = lambda, y = y,
X.re = X.re, beta.star = beta.star, mu = mu, X.w = X.w)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.