Nothing
.internal_xmapdf_print = \(x,keyname = "libsizes",significant = FALSE){
resdf = x$xmap
bidirectional = x$bidirectional
if (bidirectional){
if (significant) {
resdf = resdf[resdf$x_xmap_y_sig < 0.05 & resdf$y_xmap_x_sig < 0.05,
c(keyname, "y_xmap_x_mean", "x_xmap_y_mean"),drop = FALSE]
} else {
resdf = resdf[,c(keyname, "y_xmap_x_mean", "x_xmap_y_mean"),drop = FALSE]
}
names(resdf) = c(keyname,
paste0(x$varname[1], "->", x$varname[2]),
paste0(x$varname[2], "->", x$varname[1]))
} else {
if (significant) {
resdf = resdf[resdf$y_xmap_x_sig < 0.05,c(keyname, "y_xmap_x_mean"),drop = FALSE]
} else {
resdf = resdf[,c(keyname, "y_xmap_x_mean"),drop = FALSE]
}
names(resdf) = c(keyname,
paste0(x$varname[1], "->", x$varname[2]))
}
return(resdf)
}
#' print ccm result
#' @noRd
#' @export
print.ccm_res = \(x,significant = FALSE,...){
print(.internal_xmapdf_print(x,significant = significant))
}
#' print cmc result
#' @noRd
#' @export
print.cmc_res = \(x,significant = FALSE,...){
print(.internal_xmapdf_print(x,"neighbors",significant = significant))
}
#' print pcm result
#' @noRd
#' @export
print.pcm_res = \(x,significant = FALSE,...){
pxmap = x[-2]
xmap = x[-1]
cat('-------------------------------------- \n')
cat("***partial cross mapping prediction*** \n")
cat('-------------------------------------- \n')
print(.internal_xmapdf_print(pxmap,significant = significant))
cat("\n------------------------------ \n")
cat("***cross mapping prediction*** \n")
cat('------------------------------ \n')
print(.internal_xmapdf_print(xmap,significant = significant))
}
#' print xmap_self result
#' @noRd
#' @export
print.xmap_self = \(x,...){
res = as.matrix(x$xmap)
if (x$method == "smap"){
cat(paste0("The suggested theta for variable ", x$varname, " is ", OptThetaParm(res)), "\n")
} else {
if (x$method == "simplex"){
res = OptEmbedDim(res)
} else {
res = OptICparm(res)
}
cat(paste0("The suggested E and k for variable ", x$varname, " is ", res[1], " and ", res[2]), "\n")
if (res[1] == 1 && x$tau == 0) warning("When tau = 0, E should not be 1")
}
}
#' print sc result
#' @noRd
#' @export
print.sc_res = \(x,...){
sc = round(x$sc,3)
varname = x$varname
cat(c("spatial causality test",
paste0(paste0(x$varname[1], " -> ", x$varname[2],": statistic = "), sc[1], ", p value = ", sc[2]),
paste0(paste0(x$varname[2], " -> ", x$varname[1],": statistic = "), sc[3], ", p value = ", sc[4])),
sep = "\n")
}
#' plot ccm result
#' @noRd
#' @export
plot.ccm_res = \(x, family = "serif", legend_texts = NULL,
legend_cols = c("#ed795b","#608dbe"),
draw_ci = FALSE, ci_alpha = 0.25,
xbreaks = NULL, xlimits = NULL,
ybreaks = seq(0, 1, by = 0.1),
ylimits = c(-0.05, 1),
ylabel = expression(rho), ...){
resdf = x$xmap
bidirectional = x$bidirectional
if(is.null(xbreaks)) xbreaks = resdf$libsizes
if(is.null(xlimits)) xlimits = c(min(xbreaks)-1,max(xbreaks)+1)
if (is.null(legend_texts)) legend_texts = c(paste0(x$varname[2], " xmap ", x$varname[1]),
paste0(x$varname[1], " xmap ", x$varname[2]))
legend_texts = .check_inputelementnum(legend_texts,2)
legend_cols = .check_inputelementnum(legend_cols,2)
names(legend_cols) = c("x - y","y - x")
ci_alpha = .check_inputelementnum(ci_alpha,2)
fig1 = ggplot2::ggplot(data = resdf,
ggplot2::aes(x = libsizes)) +
ggplot2::geom_line(ggplot2::aes(y = y_xmap_x_mean,
color = "x - y"),
lwd = 1.25)
if (draw_ci) {
fig1 = fig1 +
ggplot2::geom_ribbon(ggplot2::aes(ymin = y_xmap_x_lower,
ymax = y_xmap_x_upper),
alpha = ci_alpha[1], fill = legend_cols[1])
}
if (bidirectional){
fig1 = fig1 + ggplot2::geom_line(ggplot2::aes(y = x_xmap_y_mean,
color = "y - x"),
lwd = 1.25)
if (draw_ci) {
fig1 = fig1 +
ggplot2::geom_ribbon(ggplot2::aes(ymin = x_xmap_y_lower,
ymax = x_xmap_y_upper),
alpha = ci_alpha[2], fill = legend_cols[2])
}
}
fig1 = fig1 +
ggplot2::scale_x_continuous(breaks = xbreaks, limits = xlimits,
expand = c(0, 0), name = "Library size") +
ggplot2::scale_y_continuous(breaks = ybreaks, limits = ylimits,
expand = c(0, 0), name = ylabel) +
ggplot2::scale_color_manual(values = legend_cols,
labels = legend_texts,
name = "") +
ggplot2::theme_bw() +
ggplot2::theme(axis.text = ggplot2::element_text(family = family),
axis.text.x = ggplot2::element_text(angle = 30),
axis.title = ggplot2::element_text(family = family),
panel.grid = ggplot2::element_blank(),
legend.position = "inside",
legend.justification = c(0.05,1),
legend.background = ggplot2::element_rect(fill = 'transparent'),
legend.text = ggplot2::element_text(family = family))
return(fig1)
}
#' plot cmc result
#' @noRd
#' @export
plot.cmc_res = \(x, ...){
xmap = x[-1]
names(xmap) = c("xmap", "varname", "bidirectional")
class(xmap) = "ccm"
draw_ci = FALSE
fig1 = plot.ccm_res(xmap,draw_ci = draw_ci,ylabel = "Causal Score",...)
return(fig1)
}
#' plot pcm result
#' @noRd
#' @export
plot.pcm_res = \(x, partial = TRUE, ...){
indice = ifelse(partial,-2,-1)
xmap = x[indice]
class(xmap) = "ccm"
fig1 = plot.ccm_res(xmap,...)
return(fig1)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.