View source: R/ml_feature_word2vec.R
ft_word2vec | R Documentation |
Word2Vec transforms a word into a code for further natural language processing or machine learning process.
ft_word2vec(
x,
input_col = NULL,
output_col = NULL,
vector_size = 100,
min_count = 5,
max_sentence_length = 1000,
num_partitions = 1,
step_size = 0.025,
max_iter = 1,
seed = NULL,
uid = random_string("word2vec_"),
...
)
ml_find_synonyms(model, word, num)
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
vector_size |
The dimension of the code that you want to transform from words. Default: 100 |
min_count |
The minimum number of times a token must appear to be included in the word2vec model's vocabulary. Default: 5 |
max_sentence_length |
(Spark 2.0.0+) Sets the maximum length (in words) of each sentence
in the input data. Any sentence longer than this threshold will be divided into
chunks of up to |
num_partitions |
Number of partitions for sentences of words. Default: 1 |
step_size |
Param for Step size to be used for each iteration of optimization (> 0). |
max_iter |
The maximum number of iterations to use. |
seed |
A random seed. Set this value if you need your results to be reproducible across repeated calls. |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
model |
A fitted |
word |
A word, as a length-one character vector. |
num |
Number of words closest in similarity to the given word to find. |
In the case where x
is a tbl_spark
, the estimator
fits against x
to obtain a transformer, returning a tbl_spark
.
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
ml_find_synonyms()
returns a DataFrame of synonyms and cosine similarities
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.