ml_supervised_pipeline | R Documentation |
Functions for developers writing extensions for Spark ML. These functions are constructors for 'ml_model' objects that are returned when using the formula interface.
ml_supervised_pipeline(predictor, dataset, formula, features_col, label_col)
ml_clustering_pipeline(predictor, dataset, formula, features_col)
ml_construct_model_supervised(
constructor,
predictor,
formula,
dataset,
features_col,
label_col,
...
)
ml_construct_model_clustering(
constructor,
predictor,
formula,
dataset,
features_col,
...
)
new_ml_model_prediction(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model(pipeline_model, formula, dataset, ..., class = character())
new_ml_model_classification(
pipeline_model,
formula,
dataset,
label_col,
features_col,
predicted_label_col,
...,
class = character()
)
new_ml_model_regression(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model_clustering(
pipeline_model,
formula,
dataset,
features_col,
...,
class = character()
)
predictor |
The pipeline stage corresponding to the ML algorithm. |
dataset |
The training dataset. |
formula |
The formula used for data preprocessing |
features_col |
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by |
label_col |
Label column name. The column should be a numeric column. Usually this column is output by |
constructor |
The constructor function for the 'ml_model'. |
pipeline_model |
The pipeline model object returned by 'ml_supervised_pipeline()'. |
class |
Name of the subclass. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.