View source: R/ml_regression_isotonic_regression.R
| ml_isotonic_regression | R Documentation | 
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
ml_isotonic_regression(
  x,
  formula = NULL,
  feature_index = 0,
  isotonic = TRUE,
  weight_col = NULL,
  features_col = "features",
  label_col = "label",
  prediction_col = "prediction",
  uid = random_string("isotonic_regression_"),
  ...
)
| x | A  | 
| formula | Used when  | 
| feature_index | Index of the feature if  | 
| isotonic | Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true | 
| weight_col | The name of the column to use as weights for the model fit. | 
| features_col | Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by  | 
| label_col | Label column name. The column should be a numeric column. Usually this column is output by  | 
| prediction_col | Prediction column name. | 
| uid | A character string used to uniquely identify the ML estimator. | 
| ... | Optional arguments; see Details. | 
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
Other ml algorithms: 
ml_aft_survival_regression(),
ml_decision_tree_classifier(),
ml_gbt_classifier(),
ml_generalized_linear_regression(),
ml_linear_regression(),
ml_linear_svc(),
ml_logistic_regression(),
ml_multilayer_perceptron_classifier(),
ml_naive_bayes(),
ml_one_vs_rest(),
ml_random_forest_classifier()
## Not run: 
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
  sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
iso_res <- iris_tbl %>%
  ml_isotonic_regression(Petal_Length ~ Petal_Width)
pred <- ml_predict(iso_res, iris_test)
pred
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.