View source: R/ml_classification_one_vs_rest.R
| ml_one_vs_rest | R Documentation |
Reduction of Multiclass Classification to Binary Classification. Performs reduction using one against all strategy. For a multiclass classification with k classes, train k models (one per class). Each example is scored against all k models and the model with highest score is picked to label the example.
ml_one_vs_rest(
x,
formula = NULL,
classifier = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("one_vs_rest_"),
...
)
x |
A |
formula |
Used when |
classifier |
Object of class |
features_col |
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by |
label_col |
Label column name. The column should be a numeric column. Usually this column is output by |
prediction_col |
Prediction column name. |
uid |
A character string used to uniquely identify the ML estimator. |
... |
Optional arguments; see Details. |
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
Other ml algorithms:
ml_aft_survival_regression(),
ml_decision_tree_classifier(),
ml_gbt_classifier(),
ml_generalized_linear_regression(),
ml_isotonic_regression(),
ml_linear_regression(),
ml_linear_svc(),
ml_logistic_regression(),
ml_multilayer_perceptron_classifier(),
ml_naive_bayes(),
ml_random_forest_classifier()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.