sdf_rhyper: Generate random samples from a hypergeometric distribution

sdf_rhyperR Documentation

Generate random samples from a hypergeometric distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a hypergeometric distribution.

Usage

sdf_rhyper(
  sc,
  nn,
  m,
  n,
  k,
  num_partitions = NULL,
  seed = NULL,
  output_col = "x"
)

Arguments

sc

A Spark connection.

nn

Sample Size.

m

The number of successes among the population.

n

The number of failures among the population.

k

The number of draws.

num_partitions

Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster).

seed

Random seed (default: a random long integer).

output_col

Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(), sdf_rweibull()


sparklyr documentation built on May 29, 2024, 2:58 a.m.