| sdf_rt | R Documentation |
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a t-distribution.
sdf_rt(sc, n, df, num_partitions = NULL, seed = NULL, output_col = "x")
sc |
A Spark connection. |
n |
Sample Size (default: 1000). |
df |
Degrees of freedom (> 0, maybe non-integer). |
num_partitions |
Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster). |
seed |
Random seed (default: a random long integer). |
output_col |
Name of the output column containing sample values (default: "x"). |
Other Spark statistical routines:
sdf_rbeta(),
sdf_rbinom(),
sdf_rcauchy(),
sdf_rchisq(),
sdf_rexp(),
sdf_rgamma(),
sdf_rgeom(),
sdf_rhyper(),
sdf_rlnorm(),
sdf_rnorm(),
sdf_rpois(),
sdf_runif(),
sdf_rweibull()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.