View source: R/data_interface.R
spark_read_image | R Documentation |
Read image files within a directory and convert each file into a record within the resulting Spark dataframe. The output will be a Spark dataframe consisting of struct types containing the following attributes:
origin: StringType
height: IntegerType
width: IntegerType
nChannels: IntegerType
mode: IntegerType
data: BinaryType
spark_read_image(
sc,
name = NULL,
dir = name,
drop_invalid = TRUE,
repartition = 0,
memory = TRUE,
overwrite = TRUE
)
sc |
A |
name |
The name to assign to the newly generated table. |
dir |
Directory to read binary files from. |
drop_invalid |
Whether to drop files that are not valid images from the result (default: TRUE). |
repartition |
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning. |
memory |
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?) |
overwrite |
Boolean; overwrite the table with the given name if it already exists? |
Other Spark serialization routines:
collect_from_rds()
,
spark_insert_table()
,
spark_load_table()
,
spark_read()
,
spark_read_avro()
,
spark_read_binary()
,
spark_read_csv()
,
spark_read_delta()
,
spark_read_jdbc()
,
spark_read_json()
,
spark_read_libsvm()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_source()
,
spark_read_table()
,
spark_read_text()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.