spark_read_table: Reads from a Spark Table into a Spark DataFrame.

View source: R/data_interface.R

spark_read_tableR Documentation

Reads from a Spark Table into a Spark DataFrame.

Description

Reads from a Spark Table into a Spark DataFrame.

Usage

spark_read_table(
  sc,
  name,
  options = list(),
  repartition = 0,
  memory = TRUE,
  columns = NULL,
  ...
)

Arguments

sc

A spark_connection.

name

The name to assign to the newly generated table.

options

A list of strings with additional options. See https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration.

repartition

The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.

memory

Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)

columns

A vector of column names or a named vector of column types. If specified, the elements can be "binary" for BinaryType, "boolean" for BooleanType, "byte" for ByteType, "integer" for IntegerType, "integer64" for LongType, "double" for DoubleType, "character" for StringType, "timestamp" for TimestampType and "date" for DateType.

...

Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_insert_table(), spark_load_table(), spark_read(), spark_read_avro(), spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_text(), spark_save_table(), spark_write_avro(), spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(), spark_write_source(), spark_write_table(), spark_write_text()


sparklyr documentation built on May 29, 2024, 2:58 a.m.