R/tidiers_ml_tree_models.R

Defines functions glance_gbt glance.ml_model_gbt_regression glance.ml_model_gbt_classification augment.ml_model_gbt_regression augment.ml_model_gbt_classification tidy.ml_model_gbt_regression tidy.ml_model_gbt_classification glance_random_forest glance.ml_model_random_forest_regression glance.ml_model_random_forest_classification augment.ml_model_random_forest_regression augment.ml_model_random_forest_classification tidy.ml_model_random_forest_regression tidy.ml_model_random_forest_classification glance_decision_tree glance.ml_model_decision_tree_regression glance.ml_model_decision_tree_classification augment.ml_model_decision_tree_regression augment.ml_model_decision_tree_classification tidy.ml_model_decision_tree_regression tidy.ml_model_decision_tree_classification

Documented in augment.ml_model_decision_tree_classification augment.ml_model_decision_tree_regression augment.ml_model_gbt_classification augment.ml_model_gbt_regression augment.ml_model_random_forest_classification augment.ml_model_random_forest_regression glance.ml_model_decision_tree_classification glance.ml_model_decision_tree_regression glance.ml_model_gbt_classification glance.ml_model_gbt_regression glance.ml_model_random_forest_classification glance.ml_model_random_forest_regression tidy.ml_model_decision_tree_classification tidy.ml_model_decision_tree_regression tidy.ml_model_gbt_classification tidy.ml_model_gbt_regression tidy.ml_model_random_forest_classification tidy.ml_model_random_forest_regression

#' Tidying methods for Spark ML tree models
#'
#' These methods summarize the results of Spark ML models into tidy forms.
#'
#' @param x a Spark ML model.
#' @param ... extra arguments (not used.)
#' @name ml_tree_tidiers
NULL

#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_decision_tree_classification <- function(x,
                                                       ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_decision_tree_regression <- function(x,
                                                   ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @param newdata a tbl_spark of new data to use for prediction.
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_decision_tree_classification <- function(x, newdata = NULL,
                                                          ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_decision_tree_regression <- function(x, newdata = NULL,
                                                      ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_decision_tree_classification <- function(x,
                                                         ...) {
  glance_decision_tree(x)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_decision_tree_regression <- function(x,
                                                     ...) {
  glance_decision_tree(x)
}

# glance() code for decision tree is the same
# for regression and classification
glance_decision_tree <- function(x) {
  num_nodes <- x$model$num_nodes()
  depth <- x$model$depth()
  impurity <- x$model$param_map$impurity

  dplyr::tibble(
    num_nodes = num_nodes,
    depth = depth,
    impurity = impurity
  )
}


#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_random_forest_classification <- function(x,
                                                       ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_random_forest_regression <- function(x,
                                                   ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_random_forest_classification <- function(x, newdata = NULL,
                                                          ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_random_forest_regression <- function(x, newdata = NULL,
                                                      ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_random_forest_classification <- function(x,
                                                         ...) {
  glance_random_forest(x)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_random_forest_regression <- function(x,
                                                     ...) {
  glance_random_forest(x)
}

# glance() code for random forest the same
# for regression and classification
glance_random_forest <- function(x) {
  num_trees <- x$model$param_map$num_trees
  total_num_nodes <- x$model$total_num_nodes()
  max_depth <- x$model$param_map$max_depth
  impurity <- x$model$param_map$impurity
  subsampling_rate <- x$model$param_map$subsampling_rate

  dplyr::tibble(
    num_trees = num_trees,
    total_num_nodes = total_num_nodes,
    max_depth = max_depth,
    impurity = impurity,
    subsampling_rate = subsampling_rate
  )
}


#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_gbt_classification <- function(x,
                                             ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @export
tidy.ml_model_gbt_regression <- function(x,
                                         ...) {
  dplyr::as_tibble(ml_feature_importances(x))
}

#' @rdname ml_tree_tidiers
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_gbt_classification <- function(x, newdata = NULL,
                                                ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @importFrom rlang syms
#'
#' @export
augment.ml_model_gbt_regression <- function(x, newdata = NULL,
                                            ...) {
  broom_augment_supervised(x, newdata = newdata)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_gbt_classification <- function(x,
                                               ...) {
  glance_gbt(x)
}

#' @rdname ml_tree_tidiers
#' @export
glance.ml_model_gbt_regression <- function(x,
                                           ...) {
  glance_gbt(x)
}

# glance() code for gradient boosted trees is almost
#  the same for regression and classification
glance_gbt <- function(x) {

  # in gbt models, the total number of nodes is
  # model$total_num_nodes() in classification and
  # model$total_num_nodes in regression
  if (any(class(x) == "ml_model_gbt_regression")) {
    total_num_nodes <- x$model$total_num_nodes
  } else {
    total_num_nodes <- x$model$total_num_nodes()
  }

  num_trees <- length(x$model$trees())
  max_depth <- x$model$param_map$max_depth
  impurity <- x$model$param_map$impurity
  step_size <- x$model$param_map$step_size
  loss_type <- x$model$param_map$loss_type
  subsampling_rate <- x$model$param_map$subsampling_rate

  dplyr::tibble(
    num_trees = num_trees,
    total_num_nodes = total_num_nodes,
    max_depth = max_depth,
    impurity = impurity,
    step_size = step_size,
    loss_type = loss_type,
    subsampling_rate = subsampling_rate
  )
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.