Nothing
#'
#' densitylppVoronoi.R
#'
#' densityVoronoi.lpp
#'
#' $Revision: 1.15 $ $Date: 2024/01/29 08:04:32 $
#'
densityVoronoi.lpp <- function(X, f = 1, ..., nrep = 1, verbose = TRUE){
# Check input
stopifnot(is.lpp(X))
check.1.real(f)
if(badprobability(f))
stop("f should be a probability between 0 and 1")
check.1.integer(nrep)
stopifnot(nrep >= 1)
#' secret argument
what <- resolve.1.default(list(what="image"), list(...))
what <- match.arg(what, c("image", "function"))
if(f == 0 || npoints(X) == 0) {
#' uniform estimate
lambdabar <- intensity(unmark(X))
fun <- function(x, y, seg, tp) { rep(lambdabar, length(seg)) }
g <- linfun(fun, domain(X))
if(what == "image") g <- as.linim(g, ...)
return(g)
}
if(f == 1) {
#' Voronoi estimate
if(!anyDuplicated(X)) {
tes <- lineardirichlet(X)
num <- 1
} else {
um <- uniquemap(X)
first <- (um == seq_along(um))
UX <- X[first]
tes <- lineardirichlet(UX)
num <- as.integer(table(factor(um, levels=um[first])))
}
v <- tile.lengths(tes)
g <- as.linfun(tes, values=num/v, navalue=0)
if(what == "image") g <- as.linim(g, ...)
return(g)
}
#' Smoothed Voronoi estimate.
#' For each repetition calculate Dirichlet tessellation;
#' save information in a list of dataframes; and save the
#' corresponding intensity values (i.e. inverse tile lengths)
#' in a list of vectors.
dflist <- tilevalueslist <- vector("list", nrep)
blankentry <- data.frame(seg = integer(0),
t0 = numeric(0), t1 = numeric(0),
tile = integer(0))
for (i in 1:nrep) {
Xthin <- rthin(X, f)
if(npoints(Xthin) == 0){
tilevalueslist[[i]] <- 0
dflist[[i]] <- blankentry
} else {
if(!anyDuplicated(Xthin)) {
tes <- lineardirichlet(Xthin)
num <- 1
} else {
um <- uniquemap(Xthin)
first <- (um == seq_along(um))
UXthin <- Xthin[first]
tes <- lineardirichlet(UXthin)
num <- as.integer(table(factor(um, levels=um[first])))
}
v <- tile.lengths(tes)
tilevalueslist[[i]] <- num/v
dflist[[i]] <- tes$df
}
}
#' Make the result into a function on the linear network
fun <- function(x, y, seg, tp) {
result <- numeric(length(seg))
for(j in 1:nrep){
dfj <- dflist[[j]]
if(nrow(dfj) > 0) {
#' classify query points by tessellation
k <- lineartileindex(seg, tp, dfj)
#' add Voronoi estimate
lamj <- tilevalueslist[[j]]
if(!anyNA(k)) {
result <- result + lamj[k]
} else {
ok <- !is.na(k)
result[ok] <- result[ok] + lamj[k[ok]]
}
}
}
return(result/(nrep*f))
}
g <- linfun(fun, domain(X))
if(what == "image") g <- as.linim(g, ...)
return(g)
}
bw.voronoi <- function(X, ..., probrange = c(0.2,0.8), nprob = 10,
prob = NULL, nrep = 100, verbose = TRUE, warn=TRUE){
stopifnot(is.lpp(X))
trap.extra.arguments(..., .Context="in bw.voronoi")
if(!is.null(prob)) {
stopifnot(is.numeric(prob) && is.vector(prob))
nprob <- length(prob)
} else {
check.range(probrange)
prob <- seq(from=probrange[1L], to=probrange[2L], length.out=nprob)
}
check.1.integer(nrep)
nX <- npoints(X)
cooX <- coords(X)
segX <- cooX$seg
tpX <- cooX$tp
if(nX == 0) return(max(prob))
if(verbose) {
cat("Performing", nrep, "replicates... ")
pstate <- list()
}
lamhat <- array(, dim=c(nX, nprob, nrep))
for(irep in seq_len(nrep)) {
if(verbose) pstate <- progressreport(irep, nrep, state=pstate)
U <- runif(nX)
for(j in seq_len(nprob)) {
pj <- prob[j]
retain <- (U <= pj)
if(any(retain)) {
Xp <- X[retain]
#' compute leave-one-out estimates for points in Xp
lamhat[retain, j, irep] <- looVoronoiLPP(Xp)/pj
#' compute leave-one-out estimates for other points
if(any(extra <- !retain)) {
tess <- lineardirichlet(Xp)
idx <- as.integer(lineartileindex(segX[extra], tpX[extra], tess))
lamhat[extra, j, irep] <- 1/(pj * tile.lengths(tess)[idx])
}
} else lamhat[,j,irep] <- 0
}
}
lamhat <- apply(lamhat, c(1,2), mean)
cv <- colSums(log(lamhat))
result <- bw.optim(cv, prob, optimum="max",
creator="bw.voronoi",
criterion="Likelihood Cross-Validation",
warnextreme=warn, hargnames=c("probrange", "prob"),
unitname=NULL, hword="probability")
return(result)
}
looVoronoiLPP <- function(X) {
#' Compute leave-one-out Voronoi intensity estimate
#' Hacked from 'lineardirichlet'
nX <- npoints(X)
if(nX == 0) return(numeric(0))
#' Unique points, remembering original sequence
ii <- which(!duplicated(X))
uX <- X[ii]
nuX <- npoints(uX)
#' trivial case
if(nuX <= 1)
return(rep(1/volume(domain(X)), nX))
#' local coordinates
coUX <- coords(uX)[, c("seg", "tp")]
#' add label from original sequence index
coUX$lab <- ii
#' reorder
oo <- with(coUX, order(seg, tp))
coUXord <- coUX[oo, , drop=FALSE]
seg <- coUXord$seg
tp <- coUXord$tp
#' nearest neighbour of each data point, in sorted unique pattern
nnid <- nnwhich(uX[oo])
#' for each data point Y[i] in the sorted pattern Y,
#' find the label of the tile that will cover Y[i] when Y[i] is removed
neighlab <- coUXord$lab[nnid]
#' network data
L <- domain(X)
nv <- nvertices(L)
ns <- nsegments(L)
seglen <- lengths_psp(as.psp(L))
from <- L$from
to <- L$to
#' upper bound on interpoint distance
huge <- sum(seglen)
#' numerical tolerance for nnwhich
tol <- max(sqrt(.Machine$double.eps), diameter(Frame(L))/2^20)
#' For each vertex of network, find nearest and second-nearest data points
a <- vnnFind(seg, tp, ns, nv, from, to, seglen, huge, tol, kmax=2)
vnndist <- a$vnndist
vnnwhich <- a$vnnwhich
vnnlab <- coUXord$lab[vnnwhich] # index into original data pattern
vnnlab <- matrix(vnnlab, ncol=2)
#' compute result for each unique point
lenf <- numeric(nuX)
for(i in seq_len(nuX)) {
#' compute Dirichlet tessellation WITHOUT point i
coo.i <- coUXord[-i, , drop=FALSE]
usenearest <- (vnnwhich[,1] != i)
vnd <- ifelse(usenearest, vnndist[,1], vnndist[,2])
vnw <- ifelse(usenearest, vnnwhich[,1], vnnwhich[,2])
vnl <- ifelse(usenearest, vnnlab[,1], vnnlab[,2])
adjust <- (vnw > i)
vnw[adjust] <- vnw[adjust] - 1L
df <- ldtEngine(nv, ns, from, to, seglen, huge,
coo.i,
vnd, vnw, vnl)
#' tile label of nearest neighbour
neigh <- neighlab[i]
#' find tile length associated with nearest neighbour of point i
lenf[i] <- with(df, sum((tile == neigh) * seglen[seg] * (t1-t0)))
}
#' put back in correct place
result <- numeric(npoints(X))
result[ii[oo]] <- 1/lenf
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.