R/royston.R

Defines functions royston

Documented in royston

# The D measure proposed in Roysten and Sauerbrei, Stat in Med, 2004
# If eta is the risk score from a Cox model, and v = var(eta), this is
#  essentially R = v/(v+1)
# But not quite: they re-fit the model using a normalized version of r.
#
royston <- function(fit, newdata, ties=TRUE, adjust=FALSE) {
    pi <- 3.141592653589793    # a user might have overwritten the constant 
    if (!inherits(fit, "coxph")) stop("function defined only for coxph models")
    if (inherits(fit, "coxphms")) stop("not defined for multi-state models")

    if (missing(newdata)) {
        eta <- predict(fit)
        y2 <- fit$y
    }
    else {
        temp <- attr(terms(fit), "specials")
        if (!is.null(temp$strata)) 
            stop("cannot use newdata for a stratified model")
        if (!is.null(temp$tt)) 
            stop("cannot use newdata for a model with tt() terms")
        if (!is.null(fit$penaly))
            stop("cannot use newdata for a penalized model")

        eta <- predict(fit, newdata)
        yform <- formula(fit)
        yform[3] <- 1   
        y2 <- model.response(model.frame(yform, data=newdata))
        newfit <- coxph(y2 ~ eta)   # rescale
        eta <- newfit$linear.predictor
    }
    n <- length(eta)

    R.pm <- var(eta)/(pi^2/6 +var(eta))  # the measure of Kent and O'Quigley

    # Now for Royston and Sauerbrie
    # They replace eta with a "nicer" one, z = normal scores
    #  If there are ties in eta, replace each with the average normal
    # score to which it matches
    if (ties && any(duplicated(eta))) {
        z <- qnorm((1:n - 3/8)/(n + .25))
        
        # per the paper, take the average z over any ties
        index1 <- match(eta, sort(unique(eta)))
        index2 <- rank(eta, ties.method='first')
        z2 <- tapply(z[index2], index1, mean)
        qhat <- z2[index1]
    }
    else qhat <- qnorm((rank(eta) -3/8)/(n + .25)) # simple case of no ties

    # Do a Cox regression with this "nice" predictor, which has mean 0 and std 1
    #  beta from the Cox model = std of the linear predictor
    rfit <- coxph(y2 ~ qhat)
    beta <- unname(coef(rfit))
    D    <- beta * sqrt(8/pi)  # They consider D the main result
    se.D <- sqrt(rfit$var[1,1]* 8/pi)
    R2   <- beta^2/ (pi^2/6 + beta^2)  # most users will look at R-squared
    R.I  <- beta^2/ (1 + beta^2)       # their R_I statistic

    if (adjust) {
        # overfitting adjustment, related to events per coefficient
        #  if user follows the rule of 10-20 per coef it will often be small
        r <- fit$nevent/(fit$nevent- length(coef(fit)))  # will be > 1
        temp <- (1 + beta^2 -r) /r  # negative values are rare
        D <- sign(beta)*sign(temp) *sqrt(abs(temp) *8/pi)
        se.D <- se.D * abs(beta)/(r*sqrt(abs(temp)))
        R2 <- 1- r*(1-R.I)
    }  

    # The measure of Goen and Heller, computation is O(n^2)
    #
    eta <- sort(eta)
    n <- length(eta)    
    temp <- 0
    for (i in 1:(n-1)) {
        temp <- temp + sum(1/(1 + exp(eta[i]- eta[(i+1):n])))
    }
    GH = temp *2/(n * (n-1))

    # Nagelkirke
    logtest <- -2 * (fit$loglik[1] - fit$loglik[2])
    R.n = 1-exp(-logtest/fit$n)

    c(D  = D, "se(D)" = se.D, R.D = R2, R.KO= R.pm, R.N= R.n,
        C.GH= GH)   # return vector
}

Try the survival package in your browser

Any scripts or data that you put into this service are public.

survival documentation built on Aug. 24, 2021, 5:06 p.m.