Nothing
#' @description Constructs a [learner] class object for fitting a naive bayes
#' classifier with [naivebayes]. As shown in the examples, the constructed
#' learner returns predicted class probabilities of class 2 in case of binary
#' classification. A `n times p` matrix, with `n` being the number of
#' observations and `p` the number of classes, is returned for multi-class
#' classification.
#' @export
#' @param ... Additional arguments to [naivebayes].
#' @inherit constructor_shared
#' @inheritParams naivebayes
#' @examples
#' n <- 5e2
#' x1 <- rnorm(n, sd = 2)
#' x2 <- rnorm(n)
#' y <- rbinom(n, 1, lava::expit(x2*x1 + cos(x1)))
#' d <- data.frame(y, x1, x2)
#'
#' # binary classification
#' lr <- learner_naivebayes(y ~ x1 + x2)
#' lr$estimate(d)
#' lr$predict(head(d))
#'
#' # multi-class classification
#' lr <- learner_naivebayes(Species ~ .)
#' lr$estimate(iris)
#' lr$predict(head(iris))
learner_naivebayes <- function(formula,
info = "Naive Bayes",
laplace.smooth = 0,
kernel = FALSE,
learner.args = NULL,
...) {
args <- c(learner.args, list(formula = formula, info = info))
args$estimate.args <- c(
list(
laplace.smooth = laplace.smooth,
kernel = kernel
),
list(...)
)
args$specials <- union(args$specials, c("weights"))
args$estimate <- function(formula, data, ...) {
naivebayes(formula = formula, data = data, ...)
}
args$predict <- function(object, newdata, ...) {
pr <- stats::predict(object, newdata = newdata, ...)
if (NCOL(pr) == 2L) pr <- pr[, 2]
return(pr)
}
return(do.call(learner$new, args))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.