Nothing
#' `teal` module: Stack plots of variables and show association with reference variable
#'
#' Module provides functionality for visualizing the distribution of variables and
#' their association with a reference variable.
#' It supports configuring the appearance of the plots, including themes and whether to show associations.
#'
#'
#' @note For more examples, please see the vignette "Using association plot" via
#' `vignette("using-association-plot", package = "teal.modules.general")`.
#'
#' @inheritParams teal::module
#' @inheritParams shared_params
#' @param ref (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' Reference variable, must accepts a `data_extract_spec` with `select_spec(multiple = FALSE)`
#' to ensure single selection option.
#' @param vars (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' Variables to be associated with the reference variable.
#' @param show_association (`logical`) optional, whether show association of `vars`
#' with reference variable. Defaults to `TRUE`.
#' @param distribution_theme,association_theme (`character`) optional, `ggplot2` themes to be used by default.
#' Default to `"gray"`.
#'
#' @param ggplot2_args `r roxygen_ggplot2_args_param("Bivariate1", "Bivariate2")`
#'
#' @inherit shared_params return
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`grob` created with [ggplot2::ggplotGrob()])
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_association(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied to the `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.general")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.general)
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#' # general data example
#' data <- teal_data()
#' data <- within(data, {
#' require(nestcolor)
#' CO2 <- CO2
#' factors <- names(Filter(isTRUE, vapply(CO2, is.factor, logical(1L))))
#' CO2[factors] <- lapply(CO2[factors], as.character)
#' })
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_association(
#' ref = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
#' selected = "Plant",
#' fixed = FALSE
#' )
#' ),
#' vars = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variables:",
#' choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
#' selected = "Treatment",
#' multiple = TRUE,
#' fixed = FALSE
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @examplesShinylive
#' library(teal.modules.general)
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#' # CDISC data example
#' data <- teal_data()
#' data <- within(data, {
#' require(nestcolor)
#' ADSL <- teal.data::rADSL
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_association(
#' ref = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(
#' data[["ADSL"]],
#' c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2")
#' ),
#' selected = "RACE",
#' fixed = FALSE
#' )
#' ),
#' vars = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' label = "Select variables:",
#' choices = variable_choices(
#' data[["ADSL"]],
#' c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2")
#' ),
#' selected = "BMRKR2",
#' multiple = TRUE,
#' fixed = FALSE
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_g_association <- function(label = "Association",
ref,
vars,
show_association = TRUE,
plot_height = c(600, 400, 5000),
plot_width = NULL,
distribution_theme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"), # nolint: line_length.
association_theme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"), # nolint: line_length.
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_g_association")
# Normalize the parameters
if (inherits(ref, "data_extract_spec")) ref <- list(ref)
if (inherits(vars, "data_extract_spec")) vars <- list(vars)
if (inherits(ggplot2_args, "ggplot2_args")) ggplot2_args <- list(default = ggplot2_args)
# Start of assertions
checkmate::assert_string(label)
checkmate::assert_list(ref, types = "data_extract_spec")
if (!all(vapply(ref, function(x) !x$select$multiple, logical(1)))) {
stop("'ref' should not allow multiple selection")
}
checkmate::assert_list(vars, types = "data_extract_spec")
checkmate::assert_flag(show_association)
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
distribution_theme <- match.arg(distribution_theme)
association_theme <- match.arg(association_theme)
checkmate::assert_multi_class(pre_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)
checkmate::assert_multi_class(post_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)
plot_choices <- c("Bivariate1", "Bivariate2")
checkmate::assert_list(ggplot2_args, types = "ggplot2_args")
checkmate::assert_subset(names(ggplot2_args), c("default", plot_choices))
assert_decorators(decorators, "plot")
# End of assertions
# Make UI args
args <- as.list(environment())
data_extract_list <- list(
ref = ref,
vars = vars
)
ans <- module(
label = label,
server = srv_tm_g_association,
ui = ui_tm_g_association,
ui_args = args,
server_args = c(
data_extract_list,
list(plot_height = plot_height, plot_width = plot_width, ggplot2_args = ggplot2_args, decorators = decorators)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
attr(ans, "teal_bookmarkable") <- TRUE
ans
}
# UI function for the association module
ui_tm_g_association <- function(id, ...) {
ns <- NS(id)
args <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(args$ref, args$vars)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
textOutput(ns("title")),
tags$br(),
teal.widgets::plot_with_settings_ui(id = ns("myplot"))
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(args[c("ref", "vars")]),
teal.transform::data_extract_ui(
id = ns("ref"),
label = "Reference variable",
data_extract_spec = args$ref,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("vars"),
label = "Associated variables",
data_extract_spec = args$vars,
is_single_dataset = is_single_dataset_value
),
checkboxInput(
ns("association"),
"Association with reference variable",
value = args$show_association
),
checkboxInput(
ns("show_dist"),
"Scaled frequencies",
value = FALSE
),
checkboxInput(
ns("log_transformation"),
"Log transformed",
value = FALSE
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(args$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
title = "Plot settings",
teal.widgets::optionalSliderInputValMinMax(ns("alpha"), "Scatterplot opacity:", c(0.5, 0, 1), ticks = FALSE),
teal.widgets::optionalSliderInputValMinMax(ns("size"), "Scatterplot points size:", c(2, 1, 8), ticks = FALSE),
checkboxInput(ns("swap_axes"), "Swap axes", value = FALSE),
checkboxInput(ns("rotate_xaxis_labels"), "Rotate X axis labels", value = FALSE),
selectInput(
inputId = ns("distribution_theme"),
label = "Distribution theme (by ggplot):",
choices = ggplot_themes,
selected = args$distribution_theme,
multiple = FALSE
),
selectInput(
inputId = ns("association_theme"),
label = "Association theme (by ggplot):",
choices = ggplot_themes,
selected = args$association_theme,
multiple = FALSE
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), "Show R code")
),
pre_output = args$pre_output,
post_output = args$post_output
)
}
# Server function for the association module
srv_tm_g_association <- function(id,
data,
reporter,
filter_panel_api,
ref,
vars,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.general")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(ref = ref, vars = vars),
datasets = data,
select_validation_rule = list(
ref = shinyvalidate::compose_rules(
shinyvalidate::sv_required("A reference variable needs to be selected."),
~ if ((.) %in% selector_list()$vars()$select) {
"Associated variables and reference variable cannot overlap"
}
),
vars = shinyvalidate::compose_rules(
shinyvalidate::sv_required("An associated variable needs to be selected."),
~ if (length(selector_list()$ref()$select) != 0 && selector_list()$ref()$select %in% (.)) {
"Associated variables and reference variable cannot overlap"
}
)
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_merged_input <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list
)
qenv <- reactive(
teal.code::eval_code(data(), 'library("ggplot2");library("dplyr");library("tern");library("ggmosaic")') # nolint quotes
)
anl_merged_q <- reactive({
req(anl_merged_input())
qenv() %>% teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
merged <- list(
anl_input_r = anl_merged_input,
anl_q_r = anl_merged_q
)
output_q <- reactive({
teal::validate_inputs(iv_r())
ANL <- merged$anl_q_r()[["ANL"]]
teal::validate_has_data(ANL, 3)
vars_names <- merged$anl_input_r()$columns_source$vars
ref_name <- as.vector(merged$anl_input_r()$columns_source$ref)
association <- input$association
show_dist <- input$show_dist
log_transformation <- input$log_transformation
rotate_xaxis_labels <- input$rotate_xaxis_labels
swap_axes <- input$swap_axes
distribution_theme <- input$distribution_theme
association_theme <- input$association_theme
is_scatterplot <- is.numeric(ANL[[ref_name]]) && any(vapply(ANL[vars_names], is.numeric, logical(1)))
if (is_scatterplot) {
shinyjs::show("alpha")
shinyjs::show("size")
alpha <- input$alpha
size <- input$size
} else {
shinyjs::hide("alpha")
shinyjs::hide("size")
alpha <- 0.5
size <- 2
}
teal::validate_has_data(ANL[, c(ref_name, vars_names)], 3, complete = TRUE, allow_inf = FALSE)
# reference
ref_class <- class(ANL[[ref_name]])[1]
if (is.numeric(ANL[[ref_name]]) && log_transformation) {
# works for both integers and doubles
ref_cl_name <- call("log", as.name(ref_name))
ref_cl_lbl <- varname_w_label(ref_name, ANL, prefix = "Log of ")
} else {
# silently ignore when non-numeric even if `log` is selected because some
# variables may be numeric and others not
ref_cl_name <- as.name(ref_name)
ref_cl_lbl <- varname_w_label(ref_name, ANL)
}
user_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args[["Bivariate1"]],
user_default = ggplot2_args$default
)
ref_call <- bivariate_plot_call(
data_name = "ANL",
x = ref_cl_name,
x_class = ref_class,
x_label = ref_cl_lbl,
freq = !show_dist,
theme = distribution_theme,
rotate_xaxis_labels = rotate_xaxis_labels,
swap_axes = FALSE,
size = size,
alpha = alpha,
ggplot2_args = user_ggplot2_args
)
# association
ref_class_cov <- ifelse(association, ref_class, "NULL")
var_calls <- lapply(vars_names, function(var_i) {
var_class <- class(ANL[[var_i]])[1]
if (is.numeric(ANL[[var_i]]) && log_transformation) {
# works for both integers and doubles
var_cl_name <- call("log", as.name(var_i))
var_cl_lbl <- varname_w_label(var_i, ANL, prefix = "Log of ")
} else {
# silently ignore when non-numeric even if `log` is selected because some
# variables may be numeric and others not
var_cl_name <- as.name(var_i)
var_cl_lbl <- varname_w_label(var_i, ANL)
}
user_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args[["Bivariate2"]],
user_default = ggplot2_args$default
)
bivariate_plot_call(
data_name = "ANL",
x = ref_cl_name,
y = var_cl_name,
x_class = ref_class_cov,
y_class = var_class,
x_label = ref_cl_lbl,
y_label = var_cl_lbl,
theme = association_theme,
freq = !show_dist,
rotate_xaxis_labels = rotate_xaxis_labels,
swap_axes = swap_axes,
alpha = alpha,
size = size,
ggplot2_args = user_ggplot2_args
)
})
# helper function to format variable name
format_varnames <- function(x) {
if (is.numeric(ANL[[x]]) && log_transformation) {
varname_w_label(x, ANL, prefix = "Log of ")
} else {
varname_w_label(x, ANL)
}
}
new_title <-
if (association) {
switch(as.character(length(vars_names)),
"0" = sprintf("Value distribution for %s", ref_cl_lbl),
"1" = sprintf(
"Association between %s and %s",
ref_cl_lbl,
format_varnames(vars_names)
),
sprintf(
"Associations between %s and: %s",
ref_cl_lbl,
paste(lapply(vars_names, format_varnames), collapse = ", ")
)
)
} else {
switch(as.character(length(vars_names)),
"0" = sprintf("Value distribution for %s", ref_cl_lbl),
sprintf(
"Value distributions for %s and %s",
ref_cl_lbl,
paste(lapply(vars_names, format_varnames), collapse = ", ")
)
)
}
teal.code::eval_code(
merged$anl_q_r(),
substitute(
expr = title <- new_title,
env = list(new_title = new_title)
)
) %>%
teal.code::eval_code(
substitute(
expr = {
plots <- plot_calls
plot_top <- plots[[1]]
plot_bottom <- plots[[2]]
plot <- tern::stack_grobs(grobs = lapply(list(plot_top, plot_bottom), ggplot2::ggplotGrob))
},
env = list(
plot_calls = do.call(
"call",
c(list("list", ref_call), var_calls),
quote = TRUE
)
)
)
)
})
decorated_output_grob_q <- srv_decorate_teal_data(
id = "decorator",
data = output_q,
decorators = select_decorators(decorators, "plot"),
expr = {
grid::grid.newpage()
grid::grid.draw(plot)
}
)
plot_r <- reactive({
req(iv_r()$is_valid())
req(decorated_output_grob_q())[["plot"]]
})
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
output$title <- renderText({
teal.code::dev_suppress(output_q()[["title"]])
})
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_output_grob_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = "Association Plot"
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Association Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.