Nothing
#' `teal` module: Response plot
#'
#' Generates a response plot for a given `response` and `x` variables.
#' This module allows users customize and add annotations to the plot depending
#' on the module's arguments.
#' It supports showing the counts grouped by other variable facets (by row / column),
#' swapping the coordinates, show count annotations and displaying the response plot
#' as frequency or density.
#'
#' @inheritParams teal::module
#' @inheritParams shared_params
#' @param response (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' Which variable to use as the response.
#' You can define one fixed column by setting `fixed = TRUE` inside the `select_spec`.
#'
#' The `data_extract_spec` must not allow multiple selection in this case.
#' @param x (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' Specifies which variable to use on the X-axis of the response plot.
#' Allow the user to select multiple columns from the `data` allowed in teal.
#'
#' The `data_extract_spec` must not allow multiple selection in this case.
#' @param row_facet (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' optional specification of the data variable(s) to use for faceting rows.
#' @param col_facet (`data_extract_spec` or `list` of multiple `data_extract_spec`)
#' optional specification of the data variable(s) to use for faceting columns.
#' @param coord_flip (`logical(1)`)
#' Indicates whether to flip coordinates between `x` and `response`.
#' The default value is `FALSE` and it will show the `x` variable on the x-axis
#' and the `response` variable on the y-axis.
#' @param count_labels (`logical(1)`)
#' Indicates whether to show count labels.
#' Defaults to `TRUE`.
#' @param freq (`logical(1)`)
#' Indicates whether to display frequency (`TRUE`) or density (`FALSE`).
#' Defaults to density (`FALSE`).
#'
#' @inherit shared_params return
#'
#' @note For more examples, please see the vignette "Using response plot" via
#' `vignette("using-response-plot", package = "teal.modules.general")`.
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_response(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied to the `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.general")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.general)
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#' # general data example
#' data <- teal_data()
#' data <- within(data, {
#' require(nestcolor)
#' mtcars <- mtcars
#' for (v in c("cyl", "vs", "am", "gear")) {
#' mtcars[[v]] <- as.factor(mtcars[[v]])
#' }
#' })
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_response(
#' label = "Response Plots",
#' response = data_extract_spec(
#' dataname = "mtcars",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["mtcars"]], c("cyl", "gear")),
#' selected = "cyl",
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' ),
#' x = data_extract_spec(
#' dataname = "mtcars",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["mtcars"]], c("vs", "am")),
#' selected = "vs",
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @examplesShinylive
#' library(teal.modules.general)
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#' # CDISC data example
#' data <- teal_data()
#' data <- within(data, {
#' require(nestcolor)
#' ADSL <- teal.data::rADSL
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_response(
#' label = "Response Plots",
#' response = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["ADSL"]], c("BMRKR2", "COUNTRY")),
#' selected = "BMRKR2",
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' ),
#' x = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["ADSL"]], c("SEX", "RACE")),
#' selected = "RACE",
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_g_response <- function(label = "Response Plot",
response,
x,
row_facet = NULL,
col_facet = NULL,
coord_flip = FALSE,
count_labels = TRUE,
rotate_xaxis_labels = FALSE,
freq = FALSE,
plot_height = c(600, 400, 5000),
plot_width = NULL,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
pre_output = NULL,
post_output = NULL,
transformators = list(),
decorators = list()) {
message("Initializing tm_g_response")
# Normalize the parameters
if (inherits(response, "data_extract_spec")) response <- list(response)
if (inherits(x, "data_extract_spec")) x <- list(x)
if (inherits(row_facet, "data_extract_spec")) row_facet <- list(row_facet)
if (inherits(col_facet, "data_extract_spec")) col_facet <- list(col_facet)
# Start of assertions
checkmate::assert_string(label)
checkmate::assert_list(response, types = "data_extract_spec")
if (!all(vapply(response, function(x) !("" %in% x$select$choices), logical(1)))) {
stop("'response' should not allow empty values")
}
assert_single_selection(response)
checkmate::assert_list(x, types = "data_extract_spec")
if (!all(vapply(x, function(x) !("" %in% x$select$choices), logical(1)))) {
stop("'x' should not allow empty values")
}
assert_single_selection(x)
checkmate::assert_list(row_facet, types = "data_extract_spec", null.ok = TRUE)
checkmate::assert_list(col_facet, types = "data_extract_spec", null.ok = TRUE)
checkmate::assert_flag(coord_flip)
checkmate::assert_flag(count_labels)
checkmate::assert_flag(rotate_xaxis_labels)
checkmate::assert_flag(freq)
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
ggtheme <- match.arg(ggtheme)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
checkmate::assert_multi_class(pre_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)
checkmate::assert_multi_class(post_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)
assert_decorators(decorators, "plot")
# End of assertions
# Make UI args
args <- as.list(environment())
data_extract_list <- list(
response = response,
x = x,
row_facet = row_facet,
col_facet = col_facet
)
ans <- module(
label = label,
server = srv_g_response,
ui = ui_g_response,
ui_args = args,
server_args = c(
data_extract_list,
list(
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
attr(ans, "teal_bookmarkable") <- TRUE
ans
}
# UI function for the response module
ui_g_response <- function(id, ...) {
ns <- NS(id)
args <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(args$response, args$x, args$row_facet, args$col_facet)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
teal.widgets::plot_with_settings_ui(id = ns("myplot"))
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(args[c("response", "x", "row_facet", "col_facet")]),
teal.transform::data_extract_ui(
id = ns("response"),
label = "Response variable",
data_extract_spec = args$response,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("x"),
label = "X variable",
data_extract_spec = args$x,
is_single_dataset = is_single_dataset_value
),
if (!is.null(args$row_facet)) {
teal.transform::data_extract_ui(
id = ns("row_facet"),
label = "Row facetting",
data_extract_spec = args$row_facet,
is_single_dataset = is_single_dataset_value
)
},
if (!is.null(args$col_facet)) {
teal.transform::data_extract_ui(
id = ns("col_facet"),
label = "Column facetting",
data_extract_spec = args$col_facet,
is_single_dataset = is_single_dataset_value
)
},
shinyWidgets::radioGroupButtons(
inputId = ns("freq"),
label = NULL,
choices = c("frequency", "density"),
selected = ifelse(args$freq, "frequency", "density"),
justified = TRUE
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(args$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
title = "Plot settings",
checkboxInput(ns("count_labels"), "Add count labels", value = args$count_labels),
checkboxInput(ns("coord_flip"), "Swap axes", value = args$coord_flip),
checkboxInput(ns("rotate_xaxis_labels"), "Rotate X axis labels", value = args$rotate_xaxis_labels),
selectInput(
inputId = ns("ggtheme"),
label = "Theme (by ggplot):",
choices = ggplot_themes,
selected = args$ggtheme,
multiple = FALSE
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), "Show R code")
),
pre_output = args$pre_output,
post_output = args$post_output
)
}
# Server function for the response module
srv_g_response <- function(id,
data,
reporter,
filter_panel_api,
response,
x,
row_facet,
col_facet,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.general")
data_extract <- list(response = response, x = x, row_facet = row_facet, col_facet = col_facet)
rule_diff <- function(other) {
function(value) {
if (other %in% names(selector_list())) {
othervalue <- selector_list()[[other]]()[["select"]]
if (!is.null(othervalue)) {
if (identical(value, othervalue)) {
"Row and column facetting variables must be different."
}
}
}
}
}
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = data_extract,
datasets = data,
select_validation_rule = list(
response = shinyvalidate::sv_required("Please define a column for the response variable"),
x = shinyvalidate::sv_required("Please define a column for X variable"),
row_facet = shinyvalidate::compose_rules(
shinyvalidate::sv_optional(),
~ if (length(.) > 1) "There must be 1 or no row facetting variable.",
rule_diff("col_facet")
),
col_facet = shinyvalidate::compose_rules(
shinyvalidate::sv_optional(),
~ if (length(.) > 1) "There must be 1 or no column facetting variable.",
rule_diff("row_facet")
)
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("ggtheme", shinyvalidate::sv_required("Please select a theme"))
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_merged_input <- teal.transform::merge_expression_srv(
selector_list = selector_list,
datasets = data
)
qenv <- reactive(
teal.code::eval_code(data(), 'library("ggplot2");library("dplyr")') # nolint quotes
)
anl_merged_q <- reactive({
req(anl_merged_input())
qenv() %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
merged <- list(
anl_input_r = anl_merged_input,
anl_q_r = anl_merged_q
)
output_q <- reactive({
teal::validate_inputs(iv_r())
qenv <- merged$anl_q_r()
ANL <- qenv[["ANL"]]
resp_var <- as.vector(merged$anl_input_r()$columns_source$response)
x <- as.vector(merged$anl_input_r()$columns_source$x)
validate(need(is.factor(ANL[[resp_var]]), "Please select a factor variable as the response."))
validate(need(is.factor(ANL[[x]]), "Please select a factor variable as the X-Variable."))
teal::validate_has_data(ANL, 10)
teal::validate_has_data(ANL[, c(resp_var, x)], 10, complete = TRUE, allow_inf = FALSE)
row_facet_name <- if (length(merged$anl_input_r()$columns_source$row_facet) == 0) {
character(0)
} else {
as.vector(merged$anl_input_r()$columns_source$row_facet)
}
col_facet_name <- if (length(merged$anl_input_r()$columns_source$col_facet) == 0) {
character(0)
} else {
as.vector(merged$anl_input_r()$columns_source$col_facet)
}
freq <- input$freq == "frequency"
swap_axes <- input$coord_flip
counts <- input$count_labels
rotate_xaxis_labels <- input$rotate_xaxis_labels
ggtheme <- input$ggtheme
arg_position <- if (freq) "stack" else "fill"
rowf <- if (length(row_facet_name) != 0) as.name(row_facet_name)
colf <- if (length(col_facet_name) != 0) as.name(col_facet_name)
resp_cl <- as.name(resp_var)
x_cl <- as.name(x)
if (swap_axes) {
qenv <- teal.code::eval_code(
qenv,
substitute(
expr = ANL[[x]] <- with(ANL, forcats::fct_rev(x_cl)),
env = list(x = x, x_cl = x_cl)
)
)
}
qenv <- teal.code::eval_code(
qenv,
substitute(
expr = ANL[[resp_var]] <- factor(ANL[[resp_var]]),
env = list(resp_var = resp_var)
)
) %>%
# rowf and colf will be a NULL if not set by a user
teal.code::eval_code(
substitute(
expr = ANL2 <- ANL %>%
dplyr::group_by_at(dplyr::vars(x_cl, resp_cl, rowf, colf)) %>%
dplyr::summarise(ns = dplyr::n()) %>%
dplyr::group_by_at(dplyr::vars(x_cl, rowf, colf)) %>%
dplyr::mutate(sums = sum(ns), percent = round(ns / sums * 100, 1)),
env = list(x_cl = x_cl, resp_cl = resp_cl, rowf = rowf, colf = colf)
)
) %>%
teal.code::eval_code(
substitute(
expr = ANL3 <- ANL %>%
dplyr::group_by_at(dplyr::vars(x_cl, rowf, colf)) %>%
dplyr::summarise(ns = dplyr::n()),
env = list(x_cl = x_cl, rowf = rowf, colf = colf)
)
)
plot_call <- substitute(
expr = ggplot2::ggplot(ANL2, ggplot2::aes(x = x_cl, y = ns)) +
ggplot2::geom_bar(ggplot2::aes(fill = resp_cl), stat = "identity", position = arg_position),
env = list(
x_cl = x_cl,
resp_cl = resp_cl,
arg_position = arg_position
)
)
if (!freq) {
plot_call <- substitute(
plot_call + ggplot2::expand_limits(y = c(0, 1.1)),
env = list(plot_call = plot_call)
)
}
if (counts) {
plot_call <- substitute(
expr = plot_call +
ggplot2::geom_text(
data = ANL2,
ggplot2::aes(label = ns, x = x_cl, y = ns, group = resp_cl),
col = "white",
vjust = "middle",
hjust = "middle",
position = position_anl2_value
) +
ggplot2::geom_text(
data = ANL3, ggplot2::aes(label = ns, x = x_cl, y = anl3_y),
hjust = hjust_value,
vjust = vjust_value,
position = position_anl3_value
),
env = list(
plot_call = plot_call,
x_cl = x_cl,
resp_cl = resp_cl,
hjust_value = if (swap_axes) "left" else "middle",
vjust_value = if (swap_axes) "middle" else -1,
position_anl2_value = if (!freq) quote(position_fill(0.5)) else quote(position_stack(0.5)), # nolint: line_length.
anl3_y = if (!freq) 1.1 else as.name("ns"),
position_anl3_value = if (!freq) "fill" else "stack"
)
)
}
if (swap_axes) {
plot_call <- substitute(plot_call + coord_flip(), env = list(plot_call = plot_call))
}
facet_cl <- facet_ggplot_call(row_facet_name, col_facet_name)
if (!is.null(facet_cl)) {
plot_call <- substitute(expr = plot_call + facet_cl, env = list(plot_call = plot_call, facet_cl = facet_cl))
}
dev_ggplot2_args <- teal.widgets::ggplot2_args(
labs = list(
x = varname_w_label(x, ANL),
y = varname_w_label(resp_var, ANL, prefix = "Proportion of "),
fill = varname_w_label(resp_var, ANL)
),
theme = list(legend.position = "bottom")
)
if (rotate_xaxis_labels) {
dev_ggplot2_args$theme[["axis.text.x"]] <- quote(ggplot2::element_text(angle = 45, hjust = 1))
}
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = dev_ggplot2_args
)
parsed_ggplot2_args <- teal.widgets::parse_ggplot2_args(
all_ggplot2_args,
ggtheme = ggtheme
)
plot_call <- substitute(expr = {
plot <- plot_call + labs + ggthemes + themes
}, env = list(
plot_call = plot_call,
labs = parsed_ggplot2_args$labs,
themes = parsed_ggplot2_args$theme,
ggthemes = parsed_ggplot2_args$ggtheme
))
teal.code::eval_code(qenv, plot_call)
})
decorated_output_plot_q <- srv_decorate_teal_data(
id = "decorator",
data = output_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive(req(decorated_output_plot_q())[["plot"]])
# Insert the plot into a plot_with_settings module from teal.widgets
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_output_plot_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = "Show R Code for Response"
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Response Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.