Description Usage Arguments Value Examples
Computes the triplet loss with hard negative and hard positive mining.
1 | loss_triplet_hard(margin = 1, soft = FALSE, name = NULL, ...)
|
margin |
Float, margin term in the loss definition. Default value is 1.0. |
soft |
Boolean, if set, use the soft margin version. Default value is False. |
name |
Optional name for the op. |
... |
additional arguments to pass |
triplet_loss: float scalar with dtype of y_pred.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
model = keras_model_sequential() %>%
layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
layer_max_pooling_2d(pool_size=2) %>%
layer_flatten() %>%
layer_dense(256, activation= NULL) %>%
layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))
model %>% compile(
optimizer = optimizer_lazy_adam(),
# apply triplet semihard loss
loss = loss_triplet_hard())
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.