Nothing
#' Interactive Plotting for One or More Time Series
#'
#' A workhorse time-series plotting function that generates interactive `plotly` plots,
#' consolidates 20+ lines of `ggplot2` code, and scales well to many time series.
#'
#'
#' @param .data A `tibble` or `data.frame` with a time-based column
#' @param .date_var A column containing either date or date-time values
#' @param .value A column containing numeric values
#' @param .color_var A categorical column that can be used to change the
#' line color
#' @param .facet_vars One or more grouping columns that broken out into `ggplot2` facets.
#' These can be selected using `tidyselect()` helpers (e.g `contains()`).
#' @param .facet_ncol Number of facet columns.
#' @param .facet_nrow Number of facet rows (only used for `.trelliscope = TRUE`)
#' @param .facet_scales Control facet x & y-axis ranges.
#' Options include "fixed", "free", "free_y", "free_x"
#' @param .facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
#' @param .facet_collapse Multiple facets included on one facet strip instead of
#' multiple facet strips.
#' @param .facet_collapse_sep The separator used for collapsing facets.
#' @param .facet_strip_remove Whether or not to remove the strip and text label for each facet.
#' @param .line_color Line color. Overrided if `.color_var` is specified.
#' @param .line_size Line size.
#' @param .line_type Line type.
#' @param .line_alpha Line alpha (opacity). Range: (0, 1).
#' @param .y_intercept Value for a y-intercept on the plot
#' @param .y_intercept_color Color for the y-intercept
#' @param .x_intercept Value for a x-intercept on the plot
#' @param .x_intercept_color Color for the x-intercept
#' @param .smooth Logical - Whether or not to include a trendline smoother.
#' Uses See [smooth_vec()] to apply a LOESS smoother.
#' @param .smooth_period Number of observations to include in the Loess Smoother.
#' Set to "auto" by default, which uses `tk_get_trend()`
#' to determine a logical trend cycle.
#' @param .smooth_message Logical.
#' Whether or not to return the trend selected as a message.
#' Useful for those that want to see what `.smooth_period` was selected.
#' @param .smooth_span Percentage of observations to include in the Loess Smoother.
#' You can use either period or span. See [smooth_vec()].
#' @param .smooth_degree Flexibility of Loess Polynomial.
#' Either 0, 1, 2 (0 = lest flexible, 2 = more flexible).
#' @param .smooth_color Smoother line color
#' @param .smooth_size Smoother line size
#' @param .smooth_alpha Smoother alpha (opacity). Range: (0, 1).
#' @param .legend_show Toggles on/off the Legend
#' @param .title Title for the plot
#' @param .x_lab X-axis label for the plot
#' @param .y_lab Y-axis label for the plot
#' @param .color_lab Legend label if a `color_var` is used.
#' @param .interactive Returns either a static (`ggplot2`) visualization or an interactive (`plotly`) visualization
#' @param .plotly_slider If `TRUE`, returns a plotly date range slider.
#' @param .trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
#' Must have `trelliscopejs` installed.
#' @param .trelliscope_params Pass parameters to the `trelliscopejs::facet_trelliscope()` function as a `list()`.
#' The only parameters that cannot be passed are:
#' - `ncol`: use `.facet_ncol`
#' - `nrow`: use `.facet_nrow`
#' - `scales`: use `facet_scales`
#' - `as_plotly`: use `.interactive`
#'
#' @return A static `ggplot2` plot or an interactive `plotly` plot
#'
#' @details
#'
#' `plot_time_series()` is a scalable function that works with both _ungrouped_ and _grouped_
#' `data.frame` objects (and `tibbles`!).
#'
#' __Interactive by Default__
#'
#' `plot_time_series()` is built for exploration using:
#'
#' - __Interactive Plots:__ `plotly` (default) - Great for exploring!
#' - __Static Plots:__ `ggplot2` (set `.interactive = FALSE`) - Great for PDF Reports
#'
#' By default, an interactive `plotly` visualization is returned.
#'
#' __Scalable with Facets & Dplyr Groups__
#'
#' `plot_time_series()` returns multiple time series plots using `ggplot2` facets:
#'
#' - `group_by()` - If groups are detected, multiple facets are returned
#' - `plot_time_series(.facet_vars)` - You can manually supply facets as well.
#'
#' __Can Transform Values just like ggplot__
#'
#' The `.values` argument accepts transformations just like `ggplot2`.
#' For example, if you want to take the log of sales you can use
#' a call like `plot_time_series(date, log(sales))` and the log transformation
#' will be applied.
#'
#' __Smoother Period / Span Calculation__
#'
#' The `.smooth = TRUE` option returns a smoother that is calculated based on either:
#'
#' 1. A `.smooth_period`: Number of observations
#' 2. A `.smooth_span`: A percentage of observations
#'
#' By default, the `.smooth_period` is automatically calculated using 75% of the observertions.
#' This is the same as `geom_smooth(method = "loess", span = 0.75)`.
#'
#' A user can specify a time-based window (e.g. `.smooth_period = "1 year"`)
#' or a numeric value (e.g. `smooth_period = 365`).
#'
#' Time-based windows return the median number of observations in a window using `tk_get_trend()`.
#'
#'
#'
#' @examples
#'
#' library(dplyr)
#' library(lubridate)
#'
#' # Works with individual time series
#' FANG %>%
#' filter(symbol == "FB") %>%
#' plot_time_series(date, adjusted, .interactive = FALSE)
#'
#' # Works with groups
#' FANG %>%
#' group_by(symbol) %>%
#' plot_time_series(date, adjusted,
#' .facet_ncol = 2, # 2-column layout
#' .interactive = FALSE)
#'
#' # Can also group inside & use .color_var
#' FANG %>%
#' mutate(year = year(date)) %>%
#' plot_time_series(date, adjusted,
#' .facet_vars = c(symbol, year), # add groups/facets
#' .color_var = year, # color by year
#' .facet_ncol = 4,
#' .facet_scales = "free",
#' .facet_collapse = TRUE, # combine group strip text into 1 line
#' .interactive = FALSE)
#'
#' # Can apply transformations to .value or .color_var
#' # - .value = log(adjusted)
#' # - .color_var = year(date)
#' FANG %>%
#' plot_time_series(date, log(adjusted),
#' .color_var = year(date),
#' .facet_vars = contains("symbol"),
#' .facet_ncol = 2,
#' .facet_scales = "free",
#' .y_lab = "Log Scale",
#' .interactive = FALSE)
#'
#'
#'
#' @export
plot_time_series <- function(
.data, .date_var, .value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.x_intercept = NULL,
.x_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,
.title = "Time Series Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list()
) {
# Tidyeval Setup
date_var_expr <- rlang::enquo(.date_var)
value_expr <- rlang::enquo(.value)
color_var_expr <- rlang::enquo(.color_var)
# Checks
if (!is.data.frame(.data)) {
stop(call. = FALSE, "plot_time_series(.data) is not a data-frame or tibble. Please supply a data.frame or tibble.")
}
if (rlang::quo_is_missing(date_var_expr)) {
stop(call. = FALSE, "plot_time_series(.date_var) is missing. Please supply a date or date-time column.")
}
if (rlang::quo_is_missing(value_expr)) {
stop(call. = FALSE, "plot_time_series(.value) is missing. Please a numeric column.")
}
UseMethod("plot_time_series", .data)
}
#' @export
plot_time_series.data.frame <- function(
.data, .date_var, .value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.x_intercept = NULL,
.x_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,
.title = "Time Series Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list()
) {
# Tidyeval Setup
date_var_expr <- rlang::enquo(.date_var)
value_expr <- rlang::enquo(.value)
facets_expr <- rlang::enquo(.facet_vars)
color_var_expr <- rlang::enquo(.color_var)
# Facet Names
facets_expr <- rlang::syms(names(tidyselect::eval_select(facets_expr, .data)))
# ---- DATA SETUP ----
# Evaluate Formula
data_formatted <- tibble::as_tibble(.data) %>%
dplyr::group_by(!!! facets_expr) %>%
dplyr::mutate(.value_mod = !! value_expr) %>%
dplyr::ungroup()
# Color setup
if (rlang::quo_is_missing(color_var_expr)) color_var_expr <- enquo(NULL)
if (!rlang::quo_is_null(color_var_expr)) {
data_formatted <- data_formatted %>%
dplyr::group_by(!!! facets_expr) %>%
dplyr::mutate(.color_mod = (!! color_var_expr)) %>%
dplyr::ungroup() %>%
dplyr::mutate(.color_mod = forcats::as_factor(.color_mod))
}
# Facet setup
facet_names <- data_formatted %>% dplyr::select(!!! facets_expr) %>% colnames()
if (length(facet_names) > 0) {
if (.facet_collapse) {
data_formatted <- data_formatted %>%
dplyr::ungroup() %>%
dplyr::mutate(.facets_collapsed = stringr::str_c(!!! rlang::syms(facet_names),
sep = .facet_collapse_sep)) %>%
dplyr::mutate(.facets_collapsed = forcats::as_factor(.facets_collapsed)) %>%
dplyr::group_by(.facets_collapsed)
facet_names <- ".facets_collapsed"
} else {
data_formatted <- data_formatted %>%
dplyr::group_by(!!! rlang::syms(facet_names))
}
}
group_names <- dplyr::group_vars(data_formatted)
# Smooth calculation
if (.smooth) {
# Handle Groups
if (!rlang::quo_is_null(color_var_expr)) {
# If color applied, add as group variable
group_names <- c(group_names, ".color_mod")
}
if (length(group_names) > 0) {
data_formatted <- data_formatted %>%
dplyr::ungroup() %>%
dplyr::group_by(!!! rlang::syms(group_names))
}
# Apply smoother
data_formatted <- data_formatted %>%
dplyr::mutate(.value_smooth = auto_smooth(
idx = !! date_var_expr,
x = .value_mod,
smooth_period = .smooth_period,
smooth_span = .smooth_span,
smooth_degree = .smooth_degree,
smooth_message = .smooth_message)
) %>%
dplyr::ungroup()
}
# If .value exists, remove it
if (any(".value" %in% names(data_formatted))) {
data_formatted <- data_formatted %>%
dplyr::select(-.value)
}
# ---- PLOT SETUP ----
g <- data_formatted %>%
dplyr::rename(.value = .value_mod) %>%
ggplot2::ggplot(ggplot2::aes(!! date_var_expr, .value))
# Add line
if (rlang::quo_is_null(color_var_expr)) {
g <- g +
ggplot2::geom_line(
color = .line_color,
linewidth = .line_size,
linetype = .line_type,
alpha = .line_alpha
)
} else {
g <- g +
ggplot2::geom_line(
ggplot2::aes(color = .color_mod, group = .color_mod),
linewidth = .line_size,
linetype = .line_type,
alpha = .line_alpha
) +
scale_color_tq()
}
# Add facets
if (length(facet_names) > 0) {
g <- g +
ggplot2::facet_wrap(
ggplot2::vars(!!! rlang::syms(facet_names)),
ncol = .facet_ncol,
scales = .facet_scales,
dir = .facet_dir
)
}
# Add a smoother
if (.smooth) {
if (rlang::quo_is_null(color_var_expr)) {
g <- g +
ggplot2::geom_line(
ggplot2::aes(y = .value_smooth),
color = .smooth_color,
size = .smooth_size,
alpha = .smooth_alpha)
} else {
g <- g +
ggplot2::geom_line(
ggplot2::aes(y = .value_smooth, group = .color_mod),
color = .smooth_color,
size = .smooth_size,
alpha = .smooth_alpha
)
}
}
# Add a Y-Intercept if desired
if (!is.null(.y_intercept)) {
g <- g +
ggplot2::geom_hline(yintercept = .y_intercept, color = .y_intercept_color)
}
# Add a X-Intercept if desired
if (!is.null(.x_intercept)) {
g <- g +
ggplot2::geom_vline(xintercept = .x_intercept, color = .x_intercept_color)
}
# Add theme & labs
g <- g +
theme_tq() +
ggplot2::labs(x = .x_lab, y = .y_lab, title = .title, color = .color_lab)
# Show Legend?
if (!.legend_show) {
g <- g +
ggplot2::theme(legend.position = "none")
}
# Remove the facet strip?
if (.facet_strip_remove) {
g <- g +
ggplot2::theme(
strip.background = ggplot2::element_blank(),
strip.text.x = ggplot2::element_blank()
)
}
# Convert to trelliscope and/or plotly?
if (!.trelliscope) {
if (.interactive) {
g <- plotly::ggplotly(g, dynamicTicks = TRUE)
if (.plotly_slider) {
g <- g %>%
plotly::layout(
xaxis = list(
rangeslider = list(type = "date")
)
)
}
}
} else {
# g <- g +
# trelliscopejs::facet_trelliscope(
# facets = ggplot2::vars(!!! rlang::syms(facet_names)),
# ncol = .facet_ncol,
# nrow = .facet_nrow,
# scales = .facet_scales,
# as_plotly = .interactive
# )
trell <- do.call(trelliscopejs::facet_trelliscope, c(
list(
facets = ggplot2::vars(!!! rlang::syms(group_names)),
ncol = .facet_ncol,
nrow = .facet_nrow,
scales = .facet_scales,
as_plotly = .interactive
),
.trelliscope_params
))
g <- g + trell
}
return(g)
}
#' @export
plot_time_series.grouped_df <- function(
.data, .date_var, .value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.x_intercept = NULL,
.x_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,
.title = "Time Series Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list()
) {
# Tidy Eval Setup
group_names <- dplyr::group_vars(.data)
value_expr <- rlang::enquo(.value)
facets_expr <- rlang::enquos(.facet_vars)
# Checks
facet_names <- .data %>% dplyr::ungroup() %>% dplyr::select(!!! facets_expr) %>% colnames()
if (length(facet_names) > 0) message("plot_time_series(...): Groups are previously detected. Grouping by: ",
stringr::str_c(group_names, collapse = ", "))
# ---- DATA SETUP ----
# Ungroup Data
data_formatted <- .data %>% dplyr::ungroup()
# ---- PLOT SETUP ----
plot_time_series(
.data = data_formatted,
.date_var = !! rlang::enquo(.date_var),
.value = !! rlang::enquo(.value),
.color_var = !! rlang::enquo(.color_var),
# ...
.facet_vars = !! enquo(group_names),
.facet_ncol = .facet_ncol,
.facet_nrow = .facet_nrow,
.facet_scales = .facet_scales,
.facet_dir = .facet_dir,
.facet_collapse = .facet_collapse,
.facet_collapse_sep = .facet_collapse_sep,
.facet_strip_remove = .facet_strip_remove,
.line_color = .line_color,
.line_size = .line_size,
.line_type = .line_type,
.line_alpha = .line_alpha,
.y_intercept = .y_intercept,
.y_intercept_color = .y_intercept_color,
.x_intercept = .x_intercept,
.x_intercept_color = .x_intercept_color,
.smooth = .smooth,
.smooth_period = .smooth_period,
.smooth_message = .smooth_message,
.smooth_span = .smooth_span,
.smooth_degree = .smooth_degree,
.smooth_color = .smooth_color,
.smooth_size = .smooth_size,
.smooth_alpha = .smooth_alpha,
.legend_show = .legend_show,
.title = .title,
.x_lab = .x_lab,
.y_lab = .y_lab,
.interactive = .interactive,
.plotly_slider = .plotly_slider,
.trelliscope = .trelliscope,
.trelliscope_params = .trelliscope_params
)
}
# UTILS ----
# A wrapper for smooth_vec() that handles changes in grouped idx's
auto_smooth <- function(idx, x,
smooth_period,
smooth_span,
smooth_degree,
smooth_message) {
if (length(idx) < 2) {
return(x)
}
if (all(c(is.null(smooth_span), is.numeric(idx)))) {
# Numeric index
smooth_span <- 0.75
}
if (all({
c(!is.null(smooth_period),
is.null(smooth_span)
)
})) {
# smooth_period = some value, and smooth span is NULL
if (tolower(smooth_period) == "auto") {
smooth_period <- ceiling(length(idx) * 0.75)
}
smooth_period <- tk_get_trend(
idx = idx,
period = smooth_period,
message = smooth_message
)
smooth_span <- NULL
} else {
# smooth span overrides smooth period
smooth_period <- NULL
smooth_span <- as.numeric(smooth_span)
# if (smooth_message) message(stringr::str_glue())
}
ret <- smooth_vec(
x = x,
period = smooth_period,
span = smooth_span,
degree = smooth_degree
)
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.