Nothing
#' LIFT for multi-label Classification
#'
#' Create a multi-label learning with Label specIfic FeaTures (LIFT) model.
#'
#' LIFT firstly constructs features specific to each label by conducting
#' clustering analysis on its positive and negative instances, and then performs
#' training and testing by querying the clustering results.
#'
#' @family Transformation methods
#' @param mdata A mldr dataset used to train the binary models.
#' @param base.algorithm A string with the name of the base algorithm. (Default:
#' \code{options("utiml.base.algorithm", "SVM")})
#' @param ratio Control the number of clusters being retained. Must be between
#' 0 and 1. (Default: \code{0.1})
#' @param ... Others arguments passed to the base algorithm for all subproblems.
#' @param cores The number of cores to parallelize the training. Values higher
#' than 1 require the \pkg{parallel} package. (Default:
#' \code{options("utiml.cores", 1)})
#' @param seed An optional integer used to set the seed. This is useful when
#' the method is run in parallel. (Default: \code{options("utiml.seed", NA)})
#' @return An object of class \code{LIFTmodel} containing the set of fitted
#' models, including:
#' \describe{
#' \item{labels}{A vector with the label names.}
#' \item{models}{A list of the generated models, named by the label names.}
#' }
#' @references
#' Zhang, M.-L., & Wu, L. (2015). Lift: Multi-Label Learning with
#' Label-Specific Features. IEEE Transactions on Pattern Analysis and Machine
#' Intelligence, 37(1), 107-120.
#' @export
#'
#' @examples
#' model <- lift(toyml, "RANDOM")
#' pred <- predict(model, toyml)
#'
#' \donttest{
#' # Runing lift with a specific ratio
#' model <- lift(toyml, "RF", 0.15)
#' }
lift <- function(mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
ratio = 0.1, ..., cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)) {
# Validations
if (!is(mdata, "mldr")) {
stop("First argument must be an mldr object")
}
if (cores < 1) {
stop("Cores must be a positive value")
}
if (ratio < 0 || ratio > 1) {
stop("The attribbute ratio must be between 0 and 1")
}
#TODO parametrize clustering and distance method
# LIFT Model class
liftmodel <- list(labels = rownames(mdata$labels),
ratio = ratio, call = match.call())
# Create models
mldataset <- rep_nom_attr(mdata$dataset[mdata$attributesIndexes], TRUE)
labels <- utiml_rename(liftmodel$labels)
liftdata <- utiml_lapply(labels, function (label) {
#Form Pk and Nk based on D according to Eq.(1)
Pk <- mdata$dataset[,label] == 1
Nk <- !Pk
#Perform k-means on Pk and Nk, each with mk clusters as defined in Eq.(2)
mk <- ceiling(ratio * min(sum(Pk), sum(Nk)))
gpk <- stats::kmeans(mldataset[Pk, ], mk)
gnk <- stats::kmeans(mldataset[Nk, ], mk)
centroids <- rbind(gpk$centers, gnk$centers)
rownames(centroids) <- c(paste("p", rownames(gpk$centers), sep=''),
paste("n", rownames(gnk$centers), sep=''))
#Create the mapping k for lk according to Eq.(3);
dataset <- cbind(utiml_euclidean_distance(mldataset, centroids),
mdata$dataset[label])
colnames(dataset) <- c(rownames(centroids), label)
#Induce the model using the base algorithm
model <- utiml_create_model(
utiml_prepare_data(dataset, "mldLIFT", mdata$name,
"lift", base.algorithm),
...
)
rm(dataset)
list(
centroids = centroids,
model = model
)
}, cores, seed)
liftmodel$centroids <- lapply(liftdata, function (x) x$centroids)
liftmodel$models <- lapply(liftdata, function (x) x$model)
class(liftmodel) <- "LIFTmodel"
liftmodel
}
#' Predict Method for LIFT
#'
#' This function predicts values based upon a model trained by
#' \code{\link{lift}}.
#'
#' @param object Object of class '\code{LIFTmodel}'.
#' @param newdata An object containing the new input data. This must be a
#' matrix, data.frame or a mldr object.
#' @param probability Logical indicating whether class probabilities should be
#' returned. (Default: \code{getOption("utiml.use.probs", TRUE)})
#' @param ... Others arguments passed to the base algorithm prediction for all
#' subproblems.
#' @param cores The number of cores to parallelize the training. Values higher
#' than 1 require the \pkg{parallel} package. (Default:
#' \code{options("utiml.cores", 1)})
#' @param seed An optional integer used to set the seed. This is useful when
#' the method is run in parallel. (Default: \code{options("utiml.seed", NA)})
#' @return An object of type mlresult, based on the parameter probability.
#' @seealso \code{\link[=lift]{LIFT}}
#' @export
#'
#' @examples
#' model <- lift(toyml, "RANDOM")
#' pred <- predict(model, toyml)
predict.LIFTmodel <- function(object, newdata,
probability = getOption("utiml.use.probs", TRUE),
..., cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)) {
# Validations
if (!is(object, "LIFTmodel") && !is(object, "MLDFLmodel")) {
stop("First argument must be an LIFTmodel/MLDFLmodel object")
}
if (cores < 1) {
stop("Cores must be a positive value")
}
# Predict models
newdata <- rep_nom_attr(utiml_newdata(newdata), TRUE)
labels <- utiml_rename(object$labels)
predictions <- utiml_lapply(labels, function (label) {
centroids <- object$centroids[[label]]
dataset <- as.data.frame(utiml_euclidean_distance(newdata, centroids))
dimnames(dataset) <- list(rownames(newdata), rownames(centroids))
utiml_predict_binary_model(object$models[[label]], dataset, ...)
}, cores, seed)
utiml_predict(predictions, probability)
}
#' Print LIFT model
#' @param x The lift model
#' @param ... ignored
#'
#' @return No return value, called for print model's detail
#'
#' @export
print.LIFTmodel <- function(x, ...) {
cat("LIFT Model\n\nCall:\n")
print(x$call)
cat("\nRatio:", x$ratio, "\n")
cat("\n", length(x$labels), "Binary Models:\n")
overview <- as.data.frame(cbind(label=names(x$centroids),
attrs=unlist(lapply(x$centroids, nrow))))
rownames(overview) <- NULL
print(overview)
}
# Calculate the euclidian distance for two sets of data
utiml_euclidean_distance <- function(x, y) {
x <- t(x)
apply(y, 1, function (row) sqrt(colSums((x - row) ^ 2)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.