R/cascadeKM.R

"cascadeKM" <-
function(data, inf.gr, sup.gr, iter = 100, criterion="calinski",
  parallel = getOption("mc.cores"))
{
### DESCRIPTION

### This function use the 'kmeans' function of the 'stats' package to create
### a cascade of partitions from K = nb_inf_gr to K = nb_sup_gr

### INPUT
###
### data			The data matrix; the objects are the rows
### nb_inf_gr		Number of groups (K) for the first partition (min)
### nb_sup_gr	 	Number of groups (K) for the last partition (max)
### iter			The number of random starting configurations for each value of K
### criterion		The criterion that will be used to select the best
###				partition. See the 'clustIndex' function in PACKAGE = cclust

### OUTPUT
###
### The same as in the kmeans packages

### EXAMPLE
###
### 	result <- cascadeKM(donnee, 2, 30, iter = 50, criterion = 'calinski')
###
### 	data = data table
### 	2 = lowest number of groups for K-means
### 	30 = highest number of groups for K-means
### 	iter = 50: start kmeans 50 times using different random configurations
### 	criterion = 'calinski': the Calinski-Harabasz (1974) criterion to determine
###      the best value of K for the data set. 'Best' is in the least-squares sense.
###

### Main function
    data <- as.matrix(data)
    if(!is.null(nrow(data))){
        partition <- matrix(NA, nrow(data), sup.gr - inf.gr + 1)
    } else {
        partition <- matrix(NA, length(data), sup.gr - inf.gr + 1)
    }
    results <- matrix(NA, 2, sup.gr - inf.gr + 1)
    size <- matrix(NA, sup.gr, sup.gr - inf.gr + 1)
    ## Pour tous les nombres de groupes voulus
    h <- 1

    ## Parallelise K-means
    if (is.null(parallel))
        parallel <- 1
    hasClus <- inherits(parallel, "cluster")
    if(!hasClus && parallel <= 1) { # NO parallel computing
      tmp <- lapply(inf.gr:sup.gr, function (ii) {
        kmeans(data, ii, iter.max = 50, nstart = iter)
      })
    } else {
        if(hasClus || .Platform$OS.type == "windows") {
            if(!hasClus)
                cl <- makeCluster(parallel)
            tmp <- parLapply(cl, inf.gr:sup.gr, function (ii)
                kmeans(data, ii, iter.max = 50, nstart = iter))
            if (!hasClus)
                stopCluster(cl)
        } else { # "unix"
            tmp <- mclapply(inf.gr:sup.gr, function (ii)
                kmeans(data, ii, iter.max = 50, nstart = iter),
                mc.cores = parallel)
        }
    }
    #Set values of stuff using results from K-means
    for(ii in inf.gr:sup.gr)
    {
        #Index for tmp object
        idx <- ii - inf.gr + 1

        j <- ii - inf.gr + 1
        #tmp <- kmeans(data, ii, iter.max = 50, nstart=iter)
        size[1:ii,h] <- tmp[[idx]]$size
        h <- h + 1
        partition[, j] <- tmp[[idx]]$cluster
        ## Compute SSE statistic
        results[1, j] <- sum(tmp[[idx]]$withinss)
        ## Compute stopping criterion
        results[2, j] <- cIndexKM(tmp[[idx]], data, index = tolower(criterion))
    }
    colnames(partition) <- paste(inf.gr:sup.gr, "groups")
    tmp <- rownames(data)
    if(is.null(tmp)){
        r.name <- c(1:nrow(partition))
    }else{
        r.name <- tmp
    }
    rownames(partition) <- r.name

    colnames(results) <- paste(inf.gr:sup.gr, "groups")
    rownames(results)<-c("SSE", criterion)

    colnames(size) <- paste(inf.gr:sup.gr, "groups")
    rownames(size) <- paste("Group", 1:sup.gr)

    tout<-list(partition=partition, results=results, criterion=criterion, size=size)
    class(tout) <- "cascadeKM"
    tout
}

Try the vegan package in your browser

Any scripts or data that you put into this service are public.

vegan documentation built on Sept. 11, 2024, 7:57 p.m.