R/vfloaders.R

Defines functions formatDuration dicomelement xmldevvals loadhfadicombatch loadhfaxmlbatch loadoctopus loadhfadicom loadhfaxml

Documented in loadhfadicom loadhfadicombatch loadhfaxml loadhfaxmlbatch loadoctopus

#' @rdname vfloaders
#' @title Loaders from perimeters
#' @description Functions to load from commercial perimeters
#' @details The XML loader for the Humphrery Field Analyser (HFA) by Carl Zeiss Meditec
#' is essentially a XML parser that reads in the XML generated with the scientific
#' export license. The DICOMM loader is also a parser to read HFA data generated in a
#' DICOMM file. The loader for the Octopus perimeter by Haag-Streit is a csv reader
#' from files generated with the Eyesuite software. The parser also extracts information
#' on visual field pattern deviation values and normative values. The list that is returned
#' with the \code{loadoctopus} loader contains data frames which are structured with keys so that
#' redundancy is minimized (similar to a relational database). Detailed examples for
#' \code{loadoctopus}: \url{https://rpubs.com/huchzi/645357}
#' @param file file to load (it is a XML extracted with the export license for
#' the HFA loader), a CSV outputed by the Eyesuite software for the Octopus
#' perimeter and a CSV with two columns for the batch HFA loader. The two columns
#' for the batch HFA loader must be named `\code{file}` and `\code{type}` and must
#' have the full file name (file path + name) of each XML file to be loaded and the
#' corresponding patient type, respectively
#' @param type type of patient. It can be `\code{ctr}` (for control or healthy
#' subject-eye) or `\code{pwg}` (for patient with glaucoma) or other
#' @param repeated function to apply if there are repeated values in a particular location
#' @return Visual field data
#' @export
loadhfaxml <- function(file, type = "pwg", repeated = mean) {
  vf <- td <- tdp <- pd <- pdp <- g <- gp <- NA
  dat <- xmlToList(xmlParse(file))$PATIENT
  id <- dat$PATIENT_ID
  dob <- as.Date(dat$BIRTH_DATE)
  dat <- dat$STUDY # next level
  date <- as.Date(dat$VISIT_DATE)
  age <- getage(dob, date)
  dat <- dat$SERIES # next level
  eye <- switch(dat$SITE, "0" = "OS", "1" = "OD")
  dat <- dat$FIELD_EXAM # next level
  time <- dat$EXAM_TIME
  # get the location map
  dat <- dat$STATIC_TEST # next level
  duration <- dat$EXAM_DURATION
  if(dat$FALSE_POSITIVE_METHOD == "1") {
    fpr <- as.numeric(dat$FALSE_POSITIVE_PERCENT) / 100
  } else if(dat$FALSE_POSITIVE_METHOD == "0") {
    fpr <- as.numeric(dat$FALSE_POSITIVES$ERRORS) / as.numeric(dat$FALSE_POSITIVES$TRIALS)
  } else {
    fpr <- as.numeric(NA)
  }
  if(dat$FALSE_NEGATIVE_METHOD == "1") {
    fnr <- as.numeric(dat$FALSE_NEGATIVE_PERCENT) / 100
  } else if(dat$FALSE_NEGATIVE_METHOD == "0") {
    fnr <- as.numeric(dat$FALSE_NEGATIVES$ERRORS) / as.numeric(dat$FALSE_NEGATIVES$TRIALS)
  } else {
    fnr <- as.numeric(NA)
  }
  fl <- as.numeric(dat$FIXATION_CHECK$ERRORS) / as.numeric(dat$FIXATION_CHECK$TRIALS)
  info <- data.frame(id = id, eye = eye, date = date, time = time, age = age,
                     type = type, fpr = fpr, fnr = fnr, fl = fl, duration = duration,
                     stringsAsFactors = FALSE)
  dat <- dat$THRESHOLD_TEST # next level
  nloc <- as.numeric(dat$NUM_THRESHOLD_POINTS)
  # return coordinates and value and ensure they are sort as they should
  s <- lapply(1:nloc, function(i) {
    x <- as.numeric(dat$THRESHOLD_SITE_LIST[[i]]$X)
    y <- as.numeric(dat$THRESHOLD_SITE_LIST[[i]]$Y)
    idx <- grep("THRESHOLD", names(dat$THRESHOLD_SITE_LIST[[i]]))
    val <- do.call(repeated, list(x = as.numeric(dat$THRESHOLD_SITE_LIST[[i]][idx])))
    return(list(x, y, val))
  })
  s <- matrix(unlist(s), nloc, 3, byrow = TRUE)
  # if eye = "OS", x is negative
  if(eye == "OS") s[,1] <- -s[,1]
  s <- s[order(s[,1]),]
  s <- s[order(-s[,2]),]
  vf <- cbind(info, t(s[,3]))
  names(vf)[getvfcols()] <- paste0("l", 1:nloc)
  # need to find blindspots locations
  dat <- dat$STATPAC # next level
  nlocd <- as.numeric(dat$NUM_TOTAL_DEV_VALUE_POINTS)
  locd <- lapply(1:nlocd, function(i) {
    x <- as.numeric(dat$TOTAL_DEVIATION_VALUE_LIST[[i]]$X)
    y <- as.numeric(dat$TOTAL_DEVIATION_VALUE_LIST[[i]]$Y)
    return(list(x, y))
  })
  locd <- matrix(unlist(locd), nlocd, 2, byrow = TRUE)
  # if eye = "OS", x is negative
  if(eye == "OS") locd[,1] <- -locd[,1]
  locd <- locd[order(locd[,1]),]
  locd <- locd[order(-locd[,2]),]
  bs <- which(!(paste(s[,1], s[,2], sep = "_") %in% paste(locd[,1], locd[,2], sep = "_")))
  cutoffs <- c(50, 5, 2, 1, 0.5) / 100 # cutoff lookup for TD and PD probability levels
  # total deviation values
  if("NUM_TOTAL_DEV_VALUE_POINTS" %in% names(dat)) {
    td <- xmldevvals(dat$TOTAL_DEVIATION_VALUE_LIST, as.numeric(dat$NUM_TOTAL_DEV_VALUE_POINTS),
                     eye, bs)
    td <- cbind(info, t(td))
    names(td)[getvfcols()] <- paste0("l", 1:nloc)
  }
  # total deviation probability values
  if("NUM_TOTAL_DEV_PROBABILITY_POINTS" %in% names(dat)) {
    tdp <- cutoffs[1 + xmldevvals(dat$TOTAL_DEVIATION_PROBABILITY_LIST,
                                  as.numeric(dat$NUM_TOTAL_DEV_PROBABILITY_POINTS), eye, bs)]
    tdp <- cbind(info, t(tdp))
    names(tdp)[getvfcols()] <- paste0("l", 1:nloc)
  }
  # pattern deviation values
  if("NUM_PATTERN_DEV_VALUE_POINTS" %in% names(dat)) {
    pd <- xmldevvals(dat$PATTERN_DEVIATION_VALUE_LIST, as.numeric(dat$NUM_PATTERN_DEV_VALUE_POINTS),
                     eye, bs)
    pd <- cbind(info, t(pd))
    names(pd)[getvfcols()] <- paste0("l", 1:nloc)
  }
  # pattern deviation probability values
  if("NUM_PATTERN_DEV_PROBABILITY_POINTS" %in% names(dat)) {
    pdp <- cutoffs[1 + xmldevvals(dat$PATTERN_DEVIATION_PROBABILITY_LIST,
                                  as.numeric(dat$NUM_PATTERN_DEV_PROBABILITY_POINTS),
                                  eye, bs)]
    pdp <- cbind(info, t(pdp))
    names(pdp)[getvfcols()] <- paste0("l", 1:nloc)
  }
  cutoffs <- c(50, NA, 5, 2, 1, 0.5) / 100 # cutoff lookup for probability levels of global indices
  if("GLOBAL_INDICES" %in% names(dat)) {
    vals <- vf[,getvfcols()]
    if(length(bs) > 1) vals <- vals[,-bs]
    g <- data.frame(msens = apply(vals, 1, mean),
                    ssens = apply(vals, 1, sd),
                    tmd = as.numeric(dat$GLOBAL_INDICES$MD),
                    tsd = NA,
                    pmd = NA,
                    psd = as.numeric(dat$GLOBAL_INDICES$PSD),
                    vfi = as.numeric(dat$GLOBAL_INDICES$VFI))
    gp <- data.frame(msens = NA,
                     ssens = NA,
                     tmd = cutoffs[1 + as.numeric(dat$GLOBAL_INDICES$MD_PROBABILITY)],
                     tsd = NA,
                     pmd = NA,
                     psd = cutoffs[1 + as.numeric(dat$GLOBAL_INDICES$PSD_PROBABILITY)],
                     vfi = NA)
    g  <- cbind(info, g)
    gp <- cbind(info, gp)
  }
  return(list(vf = vf, td = td, tdp = tdp, pd = pd, pdp = pdp, g = g, gp = gp))
}

#' @rdname vfloaders
#' @export
loadhfadicom <- function(file, type = "pwg", repeated = mean) {
  vf <- td <- tdp <- pd <- pdp <- g <- gp <- NA
  # load and arrange data for processing
  dat <- readDICOMFile(file)$hdr
  dat <- as.data.frame(eval(parse(text = paste0("dat$`", file, "`"))),
                       stringsAsFactors = FALSE)
  # extract the groups we are interested on
  groups <- sort(unique(dat$group))
  # get test grid
  gridtxt <- grep("Test Pattern", dicomelement(dat, groups[2], "CodeMeaning"), value = TRUE)
  # depending on the grid, the bs is in different locations
  if(grepl("24-2", gridtxt)) bs <- visualFields::locmaps$p24d2$bs
  if(grepl("30-2", gridtxt)) bs <- visualFields::locmaps$p30d2$bs
  if(grepl("10-2", gridtxt)) bs <- visualFields::locmaps$p10d2$bs
  if(grepl("30-1", gridtxt)) bs <- visualFields::locmaps$p30d1$bs
  if(grepl("60-4", gridtxt)) bs <- visualFields::locmaps$p60d4$bs
  # get id, test date, eye, age, time, and test duration
  id   <- dicomelement(dat, groups[3], "PatientID")
  dob  <- as.Date(dicomelement(dat, groups[3], "PatientsBirthDate"), "%Y%m%d")
  date <- as.Date(dicomelement(dat, groups[8], "PerformedProcedureStepStartDate"), "%Y%m%d")
  age <- getage(dob, date)
  eye <- switch(dicomelement(dat, groups[5], "Laterality"), "L" = "OS", "R" = "OD")
  time <- round(as.numeric(dicomelement(dat, groups[8], "PerformedProcedureStepStartTime")))
  time <- substr(gsub('(?=(?:.{2})+$)', ":", time, perl = TRUE), 2, 9)
  duration <- formatDuration(as.numeric(dicomelement(dat, groups[7], "VisualFieldTestDuration")))
  # get false positives, false negatives, and fixation losses
  if(dicomelement(dat, groups[7], "FalsePositivesEstimateFlag") == "YES") {
    fpr <- as.numeric(dicomelement(dat, groups[7], "FalsePositives")) /
           as.numeric(dicomelement(dat, groups[7], "PositiveCatchTrials"))
  } else {
    fpr <- as.numeric(NA)
  }
  if(dicomelement(dat, groups[7], "FalseNegativesEstimateFlag") == "YES") {
    fnr <- as.numeric(dicomelement(dat, groups[7], "FalseNegatives")) /
           as.numeric(dicomelement(dat, groups[7], "NegativeCatchTrials"))
  } else {
    fnr <- as.numeric(NA)
  }
  fl <- as.numeric(dicomelement(dat, groups[7], "PatientNotProperlyFixatedQuantity")) /
        as.numeric(dicomelement(dat, groups[7], "FixationCheckedQuantity"))
  info <- data.frame(id = id, eye = eye, date = date, time = time, age = age,
                     type = type, fpr = fpr, fnr = fnr, fl = fl, duration = duration,
                     stringsAsFactors = FALSE)
  # get sensitivity, TD, PD and probability values
  s <- data.frame(
    x    = as.numeric(dicomelement(dat, groups[7], "VisualFieldTestPointXCoordinate")),
    y    = as.numeric(dicomelement(dat, groups[7], "VisualFieldTestPointYCoordinate")),
    val  = as.numeric(dicomelement(dat, groups[7], "SensitivityValue")),
    td   = as.numeric(dicomelement(dat, groups[7], "AgeCorrectedSensitivityDeviationValue")),
    tdp  = as.numeric(dicomelement(dat, groups[7], "AgeCorrectedSensitivityDeviationProbabilityValue")),
    pd   = as.numeric(dicomelement(dat, groups[7], "GeneralizedDefectCorrectedSensitivityDeviationValue")),
    pdp  = as.numeric(dicomelement(dat, groups[7], "GeneralizedDefectCorrectedSensitivityDeviationProbabilityValue")),
    seen = dicomelement(dat, groups[7], "StimulusResults")
  )
  if(length(bs) > 1) s$td[bs] <- s$tdp[bs] <- s$pd[bs] <- s$pdp[bs] <- NA
  s$val[s$seen == "NOT SEEN"] <- -2
  s$seen <- NULL
  if(eye == "OS") s$x <- -s$y
  s <- s[order(s$x),]
  s <- s[order(-s$y),]
  vf  <- cbind(info, t(s$val))
  td  <- cbind(info, t(s$td))
  tdp <- cbind(info, t(s$tdp))
  pd  <- cbind(info, t(s$pd))
  pdp <- cbind(info, t(s$pdp))
  names(vf)[getvfcols()] <- names(td)[getvfcols()] <- names(tdp)[getvfcols()] <- 
    names(pd)[getvfcols()] <- names(pdp)[getvfcols()] <- paste0("l", 1:nrow(s))
  cutoffs <- c(50, NA, 5, 2, 1, 0.5) / 100 # cutoff lookup for probability levels of global indices
  if("GLOBAL_INDICES" %in% names(dat)) {
    vals <- vf[,getvfcols()]
    if(length(bs) > 1) vals <- vals[,-bs]
    g <- data.frame(msens = apply(vals, 1, mean),
                    ssens = apply(vals, 1, sd),
                    tmd = as.numeric(dicomelement(dat, groups[7], "GlobalDeviationFromNormal")),
                    tsd = NA,
                    pmd = NA,
                    psd = as.numeric(dicomelement(dat, groups[7], "LocalizedDeviationfromNormal")),
                    vfi = NA)
    gp <- data.frame(msens = NA,
                     ssens = NA,
                     tmd = as.numeric(dicomelement(dat, groups[7], "GlobalDeviationProbability")),
                     tsd = NA,
                     pmd = NA,
                     psd = as.numeric(dicomelement(dat, groups[7], "LocalizedDeviationProbability")),
                     vfi = NA)
    g  <- cbind(info, g)
    gp <- cbind(info, gp)
  }
  return(list(vf = vf, td = td, tdp = tdp, pd = pd, pdp = pdp, g = g, gp = gp))
}

#' @rdname vfloaders
#' @param file name of the csv file exported by the eyesuite software
#' @param type type of patient. It can be `\code{ctr}` (for control or healthy
#' subject-eye) or `\code{pwg}` (for patient with glaucoma) or other
#' @param repeated function to apply if there are repeated values in a particular location
#' @param dateFormat format to be used for date. Its default value is \%d.\%m.\%Y
#' @export
loadoctopus <- function(file, type = "pwg", repeated = mean, dateFormat = "%d.%m.%Y") {
  
  # create a list for saving the results
  resultList <- list()
  
  # read the csv-file exported by EyeSuite
  dat <-
    read.csv2(
      file,
      header = F,
      quote = "",
      stringsAsFactors = F,
      fill = T,
      col.names = paste("V", 1:2000, sep = ""),
      encoding = "latin1"
    )
  
  # rename some columns for better readibility of code
  names(dat)[1:6] <- c("id", "lastname", "firstname","dateofbirth","sex","ethnicity")
  names(dat)[11:12] <- c("apparatus", "serial_number")
  names(dat)[18:24] <- c("eye","pattern","stimulus_size","stimulus_duration","stiumulus_luminance","strategy","tperimetry")
  names(dat)[26:31] <- c("testduration","testdate","test_starting_time","reliability_factor","locnum","questions")
  names(dat)[32:36] <- c("repetitions","positive_catch_trials","false_positives","negative_catch_trials","false_negatives")
  names(dat)[37:41] <- c("notes","sphere","cylinder","axis","bcva")
  
  # recode some variables to factors
  dat$eye <- as.character(factor(dat$eye,
                                 levels = c(0, 1, 3),
                                 labels = c("OD", "OS", "OU")))
  dat$date <- as.Date(strptime(dat$testdate, format = "%d.%m.%Y"))
  dat$dob <- strptime(dat$dateofbirth, format = "%d.%m.%Y")
  dat$age <- getage(dat$dob, dat$date)
  dat$time <- dat$test_starting_time
  dat$type <- dat$note
  dat$fpr <- round(dat$false_positives / dat$positive_catch_trials, 3)
  dat$fnr <- round(dat$false_negatives / dat$negative_catch_trials, 3)
  dat$fl <- dat$repetitions
  dat$strategy <- factor(
    dat$strategy,
    levels = c(0, 1, 2, 3, 4, 6, 11),
    labels = c("normal", "dynamic", "2LT/normal", "low vision", "1LT", "TOP", "GATE")
  )
  dat$pattern <- factor(dat$pattern)
  dat$tperimetry <- factor(dat$tperimetry,
                           levels = c(0, 1),
                           labels = c("sap", "swap"))
  
  dat <- dat[!is.na(dat$strategy), ]
  dat <- dat[!is.na(dat$pattern), ]
  dat <- dat[!is.na(dat$tperimetry), ]
  
  if (nrow(dat) < 1) stop("There are no (currently) valid visual fields in this file.")
  
  # create a table with keys for each patient
  dat$patient_identifier <- paste0(dat$lastname, dat$firstname, dat$dob, sep = ", ")
  dat$id <- as.integer(factor(dat$patient_identifier, levels = unique(dat$patient_identifier), ordered = TRUE))
  
  resultList$patients <- dat[, c("id", "firstname", "lastname", "dob")]
  
  # create a table with keys for each visual field type
  dat$vf_identifier <- paste(dat$tperimetry, dat$pattern, dat$locnum, dat$strategy, sep = ", ")
  dat$vfID <- as.integer(factor(dat$vf_identifier, levels = unique(dat$vf_identifier), ordered = TRUE))
  
  vf_index <- dat$vfID
  
  resultList$vf_types <- unique(dat[, c("vfID", "tperimetry", "pattern", "locnum", "strategy")])
  
  # function to extract sensitivities for the different loci from one line
  extractLocations <- function(tLine) {
    
    # extract number of locations
    locnum <- as.integer(tLine[which(names(tLine) == "locnum")])
    
    # extract locations
    startCol <- 44
    endCol <- startCol + (locnum* 5) - 1
    locs <- as.numeric(unlist(tLine[startCol:endCol])) / 10
    
    # create a matrix
    locMatrix <-
      data.frame(matrix(locs, locnum, 5, byrow = TRUE))
    names(locMatrix) <- c("xod", "yod", "sens1", "sens2", "norm")
    
    # switch locmap for left eyes?
    if (tLine[which(names(tLine) == "eye")] == "OS")
      locMatrix$xod <- -locMatrix$xod
    
    # order locmap
    locMatrix <- locMatrix[order(locMatrix$xod, locMatrix$yod), ]
    
    # give each location a key
    locMatrix$loc_ID <- 1:nrow(locMatrix)
    
    return(locMatrix)
  }
  
  # apply the extractLocations function on each row
  locations <- apply(dat, 1, extractLocations)
  
  # extract the locmaps
  locmaps <- lapply(locations, 
                    function (mt) { rv <- mt[, c("loc_ID", "xod", "yod")]; rownames(rv) <- NULL; return(rv) }
  )
  locmaps <- unique(locmaps)
  
  resultList$locmaps <- locmaps
  
  # extract the sensitivities
  sens <- lapply(locations, 
                 function (mt) { rv <- mt$sens1; names(rv) <- paste0("l", mt$loc_ID); return(rv) }
  )
  
  resultList$sensitivities <- 
    lapply(unique(vf_index), 
           function(vf_type) { vf_list <- sens[vf_index == vf_type]; rv <- t(sapply(vf_list, c)); return(rv)}
    )
  
  # extract the defects
  defects <- lapply(locations, 
                    function (mt) { rv <- mt$sens1 - mt$norm; names(rv) <- paste0("l", mt$loc_ID); return(rv) }
  )
  
  resultList$defects <- 
    lapply(unique(vf_index), 
           function(vf_type) { vf_list <- defects[vf_index == vf_type]; rv <- t(sapply(vf_list, c)); return(rv)}
    )
  
  # extract other properties
  resultList$fields <- dat[, c("id", "eye", "date", "time", "age", "type", "fpr", "fnr", "fl", "vfID")]
  
  # add some functions for convering these data to standard tables of the visual fields package
  resultList$create_locmap <- 
    function(vf_id) {
      lmap <- list()
      vft <- resultList$vf_types[resultList$vf_types$vfID == vf_id, c("pattern", "locnum")]
      lmap$name <- paste(vft$pattern, vft$locnum)
      lmap$desc <- "This locmap was automatically created from the csv exported by Eyesuite. NB: The locations are not numbered according to the standard!"
      lmap$coord <- resultList$locmap[[vf_id]][, c("xod", "yod")]
      names(lmap$coord) <- c("x", "y")
      return(lmap)
    }
  
  resultList$get_sensitivities <-
    function(vf_id) {
      rv <- cbind(resultList$fields[resultList$fields$vfID == vf_id, ], resultList$sensitivities[[vf_id]])
      # rv$date <- as.Date(rv$date)
    }
  
  resultList$get_defects <-
    function(vf_id) {
      rv <- cbind(resultList$fields[resultList$fields$vfID == vf_id, ], resultList$defects[[vf_id]])
      # rv$date <- as.Date(rv$date)
    }
  
  resultList$patients <- unique(resultList$patients)
  
  return(resultList)
}

#' @rdname vfloaders
#' @export
loadhfaxmlbatch <- function(file, repeated = mean) {
  csvforxml <- read.csv(file, stringsAsFactors = FALSE)
  vflist <- loadhfaxml(csvforxml[1,1], csvforxml[1,2], repeated = repeated)
  for(i in 2:nrow(csvforxml)) {
    vflist1 <- loadhfaxml(csvforxml[i,1], csvforxml[i,2], repeated = repeated)
    vflist$vf <- vfjoin(vflist$vf, vflist1$vf)
    # join only whatever else is available
    if(is.data.frame(vflist1$td))  vflist$td  <- vfjoin(vflist$td,  vflist1$td)
    if(is.data.frame(vflist1$tdp)) vflist$tdp <- vfjoin(vflist$tdp, vflist1$tdp)
    if(is.data.frame(vflist1$pd))  vflist$pd  <- vfjoin(vflist$pd,  vflist1$pd)
    if(is.data.frame(vflist1$pdp)) vflist$pdp <- vfjoin(vflist$pdp, vflist1$pdp)
    if(is.data.frame(vflist1$g))   vflist$g   <- vfjoin(vflist$g,   vflist1$g)
    if(is.data.frame(vflist1$gp))  vflist$gp  <- vfjoin(vflist$gp,  vflist1$gp)
  }
  return(vflist)
}

#' @rdname vfloaders
#' @export
loadhfadicombatch <- function(file, repeated = mean) {
  csvfordicom <- read.csv(file, stringsAsFactors = FALSE)
  vflist <- loadhfadicom(csvfordicom[1,1], csvfordicom[1,2], repeated = repeated)
  for(i in 2:nrow(csvfordicom)) {
    vflist1 <- loadhfaxml(csvfordicom[i,1], csvfordicom[i,2], repeated = repeated)
    vflist$vf <- vfjoin(vflist$vf, vflist1$vf)
    # join only whatever else is available
    if(is.data.frame(vflist1$td))  vflist$td  <- vfjoin(vflist$td,  vflist1$td)
    if(is.data.frame(vflist1$tdp)) vflist$tdp <- vfjoin(vflist$tdp, vflist1$tdp)
    if(is.data.frame(vflist1$pd))  vflist$pd  <- vfjoin(vflist$pd,  vflist1$pd)
    if(is.data.frame(vflist1$pdp)) vflist$pdp <- vfjoin(vflist$pdp, vflist1$pdp)
    if(is.data.frame(vflist1$g))   vflist$g   <- vfjoin(vflist$g,   vflist1$g)
    if(is.data.frame(vflist1$gp))  vflist$gp  <- vfjoin(vflist$gp,  vflist1$gp)
  }
  return(vflist)
}

###################################################################################
# INTERNAL FUNCTIONS: routines to ease load on XML loader
###################################################################################
# helps parse XML TD and PD values and their corresponding probability levels
#' @noRd
xmldevvals <- function(dat, nloc, eye, bs) {
  # return coordinates and value
  res <- lapply(1:nloc, function(i) {
    x <- as.numeric(dat[[i]][1])
    y <- as.numeric(dat[[i]][2])
    val <- as.numeric(dat[[i]][3])
    return(list(x, y, val))
  })
  res <- matrix(unlist(res), nloc, 3, byrow = TRUE)
  # if eye = "OS", x is negative
  if(eye == "OS") res[,1] <- -res[,1]
  res <- res[order(res[,1]),]
  res <- res[order(-res[,2]),]
  res <- res[,3]
  if(length(bs) > 0) {
    idx <- 1:(nloc + length(bs))
    aux <- rep(NA, nloc + length(bs))
    aux[idx[-bs]] <- res
    res <- aux
  }
  return(res)
}

# get value from an element of a group in a DICOM scheme
#' @noRd
dicomelement <- function(dat, group, name) {
  datgr <- dat[which(dat$group == group),]
  return(datgr$value[datgr$name == name])
}

# format duration from seconds to hh:mm:ss
#' @noRd
formatDuration <- function(ss) {
  # convert from seconds to hh:mm:ss
  hh <- floor(ss / 360)
  ss <- ss - 360 * hh
  mm <- floor(ss / 60)
  ss <- ss - 60 * mm
  # convert to strings
  hh <- as.character(hh)
  mm <- as.character(mm)
  ss <- as.character(ss)
  if(nchar(hh) == 1) hh <- paste0("0", hh)
  if(nchar(mm) == 1) mm <- paste0("0", mm)
  if(nchar(ss) == 1) ss <- paste0("0", ss)
  return(paste(hh, mm, ss, sep = ":"))
}

Try the visualFields package in your browser

Any scripts or data that you put into this service are public.

visualFields documentation built on Aug. 17, 2021, 1:06 a.m.