Nothing
multLN <-
function (X,label=NULL,dl=NULL,rob=FALSE,random=FALSE,z.warning=0.8,z.delete=TRUE)
{
if (any(X<0, na.rm=T)) stop("X contains negative values")
if ((is.vector(X)) | (nrow(X)==1)) stop("X must be a data matrix")
if (is.null(label)) stop("A value for label must be given")
if (!is.na(label)){
if (!any(X==label,na.rm=T)) stop(paste("Label",label,"was not found in the data set"))
if (label!=0 & any(X==0,na.rm=T)) stop("Zero values not labelled as censored values were found in the data set")
if (any(is.na(X))) stop(paste("NA values not labelled as censored values were found in the data set"))
}
if (is.na(label)){
if (any(X==0,na.rm=T)) stop("Zero values not labelled as censored values were found in the data set")
if (!any(is.na(X),na.rm=T)) stop(paste("Label",label,"was not found in the data set"))
}
if (is.character(dl)) stop("dl must be a numeric vector or matrix")
if (is.null(dl)){ # If dl not given use min per column
dl <- apply(X,2, function(x) min(x[x!=label]))
warning("No dl vector or matrix provided. The minimum observed values for each column used as detection limits.")
}
if (is.vector(dl)) dl <- matrix(dl,nrow=1)
dl <- as.matrix(dl) # Avoids problems when dl might be multiple classes
if (ncol(dl)!=ncol(X)) stop("The number of columns in X and dl do not agree")
if ((nrow(dl)>1) & (nrow(dl)!=nrow(X))) stop("The number of rows in X and dl do not agree")
# Standalone version of cenmle function
# This function is a recreation of `cenmle` from the R package `NADA`
# by D.R. Helsel and L.H. Lee. All credit for the methodology goes to the original authors
cenmle_standalone <- function(obs, censored, dist = "normal") {
# Internal Log-Likelihood Function (for Normal Distribution) ---
llike.norm <- function(params, x, cen) {
mean.val <- params[1]
sd.val <- params[2]
# Return a very small number if sd is non-positive to avoid errors
if (sd.val <= 0) {
return(-1e9)
}
uncensored_obs <- x[!cen]
censored_obs <- x[cen]
# Log-likelihood for the uncensored values
ll_uncensored <- sum(dnorm(uncensored_obs, mean = mean.val, sd = sd.val, log = TRUE))
# Log-likelihood for the censored values
# This is the log of the cumulative distribution function (pnorm)
ll_censored <- sum(pnorm(censored_obs, mean = mean.val, sd = sd.val, log.p = TRUE))
# Total log-likelihood is the sum of the two parts
total_ll <- ll_uncensored + ll_censored
return(total_ll)
}
if (dist == "lognormal") {
data_for_optim <- log(obs)
} else {
data_for_optim <- obs
}
# Parameter Estimation
start_mean <- mean(data_for_optim)
start_sd <- sd(data_for_optim)
if(start_sd == 0){
start_sd <- 1
}
# Maximize the log-likelihood.
# `control = list(fnscale = -1)` tells optim to maximize instead of minimize.
mle_results <- optim(
par = c(start_mean, start_sd),
fn = llike.norm,
x = data_for_optim,
cen = censored,
control = list(fnscale = -1),
hessian = FALSE # Hessian matrix not needed for this implementation
)
mu_hat <- mle_results$par[1]
sigma_hat <- mle_results$par[2]
if (dist == "lognormal") {
# For lognormal, back-transform the estimated mean (mu) and sd (sigma)
# from the log-scale to the original data scale.
final_mean <- exp(mu_hat + 0.5 * sigma_hat^2)
final_sd <- sqrt(exp(2 * mu_hat + sigma_hat^2) * (exp(sigma_hat^2) - 1))
param_names <- c("Mean (lognormal)", "SD (lognormal)")
} else {
# For normal, the results are already on the correct scale.
final_mean <- mu_hat
final_sd <- sigma_hat
param_names <- c("Mean (normal)", "SD (normal)")
}
output <- list(
parameters = c(final_mean, final_sd)
)
return(output)
}
# Standalone version of cenros function
# This function is a recreation of `cenros` from the R package `NADA`
# by D.R. Helsel and L.H. Lee. All credit for the methodology goes to the original authors
# Helper functions
hc.ppoints <- function(obs, censored) {
if (length(obs) != length(censored))
stop("obs and censored must be the same length.")
n <- length(obs)
n.cen <- sum(censored)
n.uncen <- n - n.cen
if (n.uncen == 0)
stop("All data are censored. Cannot compute plotting positions.")
# Order the data
sort_order <- order(obs)
obs_sorted <- obs[sort_order]
censored_sorted <- censored[sort_order]
pp <- numeric(n)
last_pp <- 0
last_val <- -Inf
for (i in 1:n) {
if (!censored_sorted[i]) {
# For uncensored values
val <- obs_sorted[i]
if (val > last_val) {
# New uncensored value
A <- sum(obs_sorted < val)
N <- sum(obs_sorted == val & !censored_sorted)
C <- (A + 1 - 0.5) / n
D <- (A + N - 0.5) / n
pp[i] <- (C + D) / 2
} else {
# Tied with previous uncensored value
pp[i] <- last_pp
}
last_pp <- pp[i]
last_val <- val
}
}
# For censored values, we estimate their position
for (i in 1:n) {
if (censored_sorted[i]) {
val <- obs_sorted[i]
A <- sum(obs_sorted < val)
N <- sum(obs_sorted == val & !censored_sorted)
if (N > 0) {
# If censored value is tied with uncensored values
pp[i] <- (A + 1 - 0.5) / n
} else {
# If censored value is not tied
pp[i] <- (A - 0.5) / n
}
}
}
# Un-sort the plotting positions to match original data order
pp[sort_order] <- pp
# Handle potential issues with plotting positions for values > 1 or < 0
# This can happen with tied values at the upper/lower boundaries.
pp[pp >= 1] <- 1 - .Machine$double.eps
pp[pp <= 0] <- .Machine$double.eps
return(pp)
}
trueT <- function(x) {
return(x)
}
# Core cenros function
cenros_standalone <- function(obs, censored, forwardT = "log", reverseT = "exp") {
# Get transformation functions from their string names ---
# If NULL, use the identity function `trueT`
if (is.null(forwardT) || is.null(reverseT)) {
forwardT <- "trueT"
reverseT <- "trueT"
}
forwardT_func <- get(forwardT)
reverseT_func <- get(reverseT)
# ROS Algorithm
pp <- hc.ppoints(obs, censored)
uncensored_obs <- obs[!censored]
uncensored_pp <- pp[!censored]
obs_transformed <- forwardT_func(uncensored_obs)
pp_quantiles <- qnorm(uncensored_pp)
if (any(is.infinite(obs_transformed)) || any(is.infinite(pp_quantiles))) {
stop("Infinite values produced during transformation. Check data or transformation functions.")
}
ros_lm <- lm(obs_transformed ~ pp_quantiles)
censored_pp <- pp[censored]
censored_quantiles <- qnorm(censored_pp)
new_data <- data.frame(pp_quantiles = censored_quantiles)
predicted_transformed_values <- predict(ros_lm, newdata = new_data)
modeled_censored_values <- reverseT_func(predicted_transformed_values)
final_modeled_data <- numeric(length(obs))
final_modeled_data[!censored] <- obs[!censored] # Use original uncensored values
final_modeled_data[censored] <- modeled_censored_values # Use modeled censored values
result <- list(
modeled = final_modeled_data
)
return(result)
}
rnames <- rownames(X)
X[X==label] <- NA
X <- apply(X,2,as.numeric)
rownames(X) <- rnames
checkNumZerosCol <- apply(X, 2, function(x) sum(is.na(x)))
if (any(checkNumZerosCol/nrow(X) > z.warning)) {
cases <- which(checkNumZerosCol/nrow(X) > z.warning)
if (z.delete == TRUE) {
if (length(cases) > (ncol(X)-2)) {
stop(paste("Almost all columns contain >", z.warning*100,
"% zeros/unobserved values (see arguments z.warning and z.delete).",
sep=""))
}
X <- X[,-cases]
action <- "deleted"
warning(paste("Column no. ",cases," containing >", z.warning*100,
"% zeros/unobserved values ", action, " (see arguments z.warning and z.delete).\n",
sep=""))
} else {
action <- "found"
warning(paste("Column no. ",cases," containing >", z.warning*100,
"% zeros/unobserved values ", action, " (see arguments z.warning and z.delete. Check out with zPatterns()).\n",
sep=""))
}
}
checkNumZerosRow <- apply(X, 1, function(x) sum(is.na(x)))
if (any(checkNumZerosRow/ncol(X) > z.warning)) {
cases <- which(checkNumZerosRow/ncol(X) > z.warning)
if (z.delete == TRUE) {
if (length(cases) > (nrow(X)-2)) {
stop(paste("Almost all rows contain >", z.warning*100,
"% zeros/unobserved values (see arguments z.warning and z.delete).",
sep=""))
}
X <- X[-cases,]
action <- "deleted"
warning(paste("Row no. ",cases," containing >", z.warning*100,
"% zeros/unobserved values ", action, " (see arguments z.warning and z.delete).\n",
sep=""))
} else {
action <- "found"
warning(paste("Row no. ", cases," containing >", z.warning*100,
"% zeros/unobserved values ", action,
" (see arguments z.warning and z.delete. Check out with zPatterns()).\n",
sep=""))
}
}
nn <- nrow(X); p <- ncol(X)
c <- apply(X,1,sum,na.rm=TRUE)
# Check for closure
closed <- 0
if (all( abs(c - mean(c)) < .Machine$double.eps^0.3 )) closed <- 1
if (nrow(dl)==1){
dl <- matrix(rep(1,nn),ncol=1)%*%dl
est <- dl
}
else est <- dl
if (random==FALSE){
cenGeoMean <- function(x,dl,...){
xcen <- ifelse(is.na(x),TRUE,FALSE)
x[is.na(x)] <- dl[is.na(x)]
if (rob) {ymean <- mean(cenros_standalone(log(x),xcen)$modeled);
ysd <- sd(cenros_standalone(log(x),xcen)$modeled)}
else
{ymean <- cenmle_standalone(log(x),xcen,dist="normal")$parameters[1];
ysd <- cenmle_standalone(log(x),xcen,dist="normal")$parameters[2]}
fdl <- dnorm((log(dl)-ymean)/ysd, mean = 0, sd = 1, log = FALSE)
Pdl <- pnorm((log(dl)-ymean)/ysd, mean = 0, sd = 1, log.p = FALSE)
gmeancen <- exp(ymean-ysd*(fdl/Pdl))
return(as.numeric(gmeancen))
}
for (part in 1:p)
{
if (any(is.na(X[,part])))
{
est[,part] <- cenGeoMean(X[,part],dl[,part],rob)
}
else {est[,part] <- 0}
}
Y <- X
for (i in 1:nn){
if (any(is.na(X[i,]))){
z <- which(is.na(X[i,]))
Y[i,z] <- est[i,z]
Y[i,-z] <- (1-(sum(Y[i,z]))/c[i])*X[i,-z]
X[i,z] <- as.numeric((X[i,-z][1]/Y[i,-z][1]))*Y[i,z]
}
}
} # End if not random
else{ # If random
meanln <- rep(0,p); sdln <- rep(0,p)
for (j in 1:p){
x <- X[,j]
xcen <- ifelse(is.na(X[,j]),TRUE,FALSE)
x[is.na(X[,j])] <- dl[is.na(X[,j]),j]
if (rob) {ymean <- mean(cenros_standalone(log(x),xcen)$modeled);
ysd <- sd(cenros_standalone(log(x),xcen)$modeled)}
else
{ymean <- cenmle_standalone(log(x),xcen,dist="normal")$parameters[1];
ysd <- cenmle_standalone(log(x),xcen,dist="normal")$parameters[2]}
meanln[j] <- ymean
sdln[j] <- ysd
}
Y <- X
for (i in 1:nn){
if (any(is.na(X[i,]))){
z <- which(is.na(X[i,]))
for (j in 1:length(z)){
Y[i,z[j]] <- exp(rtruncnorm(1,-Inf,log(dl[i,z[j]]),meanln[z[j]],sdln[z[j]]))
}
Y[i,-z] <- (1-(sum(Y[i,z]))/c[i])*X[i,-z]
X[i,z] <- as.numeric((X[i,-z][1]/Y[i,-z][1]))*Y[i,z]
}
}
} # End if random
if (closed==1){
X <- t(apply(X,1,function(x) x/sum(x)*c[1]))
}
return(as.data.frame(X,stringsAsFactors=TRUE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.