#' author: Gavin Ha
#' Dana-Farber Cancer Institute
#' Broad Institute
#' contact: <gavinha@gmail.com> or <gavinha@broadinstitute.org>
#' date: June 26, 2018
loadDefaultParameters <- function(copyNumber = 5, numberClonalClusters = 1,
skew = 0, hetBaselineSkew = NULL, alleleEmissionModel = "binomial", symmetric = TRUE, data = NULL) {
if (copyNumber < 3 || copyNumber > 8) {
stop("loadDefaultParameters: Fewer than 3 or more than 8 copies are
being specified. Please use minimum 3 or maximum 8 'copyNumber'.")
}
if (!alleleEmissionModel %in% c("binomial", "Gaussian")){
stop("loadDefaultParameters: alleleEmissionModel must be either \"binomial\" or \"Gaussian\".")
}
if (!symmetric){
message("loadDefaultParameters: symmetric=FALSE is deprecated; using symmetric=TRUE.")
}
## Data without allelic skew rn is theoretical
## normal reference allelic ratio initialize to
## theoretical values
rn <- 0.5
if (symmetric) {
rt = c(rn, 1, 1, 1/2, 1, 2/3, 1, 3/4, 2/4,
1, 4/5, 3/5, 1, 5/6, 4/6, 3/6, 1, 6/7,
5/7, 4/7, 1, 7/8, 6/8, 5/8, 4/8)
rt = rt + skew
rt[rt > 1] <- 1
rt[rt < (rn + skew)] <- rn + skew
## shift heterozygous states to account for noise
## when using symmetric = TRUE
if (!is.null(hetBaselineSkew)){
hetARshift <- hetBaselineSkew + 0.5
}else if (!is.null(data)){
hetARshift <- median(data$ref / data$tumDepth, na.rm = TRUE)
}else{
hetARshift <- 0.55
}
hetState <- c(4, 9, 16, 25)
rt[hetState] <- hetARshift
ZS = 0:24
ct = c(0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8)
} #else {
# rt = c(rn, 1, 1e-05, 1, 1/2, 1e-05, 1, 2/3,
# 1/3, 1e-05, 1, 3/4, 2/4, 1/4, 1e-05, 1,
# 4/5, 3/5, 2/5, 1/5, 1e-05, 1, 5/6, 4/6,
# 3/6, 2/6, 1/6, 1e-05, 1, 6/7, 5/7, 4/7,
# 3/7, 2/7, 1/7, 1e-05, 1, 7/8, 6/8, 5/8,
# 4/8, 3/8, 2/8, 1/8, 1e-05)
# rt = rt + skew
# rt[rt > 1] <- 1
# rt[rt < 0] <- 1e-05
# ZS = c(0, 1, 1, 2, 3, 2, 4, 5, 5, 4, 6, 7,
# 8, 7, 6, 9, 10, 11, 11, 10, 9, 12, 13,
# 14, 15, 14, 13, 12, 16, 17, 18, 19, 19,
# 18, 17, 16, 20, 21, 22, 23, 24, 23, 22,
# 21, 20)
# ct = c(0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4,
# 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,
# 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8,
# 8, 8, 8, 8, 8, 8, 8)
# highStates <- c(1,16:length(rt))
# hetState <- c(5, 13, 25, 41)
#}
ZS[hetState[1]] <- -1
rn = rn + skew
ind <- ct <= copyNumber
hetState <- hetState[hetState <= sum(ind)]
rt <- rt[ind]
ZS <- ZS[ind]
ct <- ct[ind] #reassign rt and ZS based on specified copy number
K <- length(rt)
N <- nrow(data)
## Dirichlet hyperparameter for initial state
## distribution, kappaG
kappaGHyper_base <- 100
if (length(data$ref) > 0 && length(data$logR) > 0){
corRho_0 <- cor(data$ref / data$tumDepth, data$logR, use = "pairwise.complete.obs")
}else{
corRho_0 <- NULL
}
var_base <- 1/20 #var(data$logR, na.rm = TRUE)
var0_base <- 1/20 #var(data$ref / data$tumDepth, na.rm = TRUE)
if (!is.null(data)){
#alphaK <- 1 / (var(data$logR, na.rm = TRUE) / sqrt(K))
#betaK <- alphaK * var(data$logR, na.rm = TRUE)
#alphaR <- 1 / (var(data$ref / data$tumDepth, na.rm = TRUE) / sqrt(K))
#betaR <- alphaK * var(data$ref / data$tumDepth, na.rm = TRUE)
betaK <- 25
alphaK <- betaK / var(data$logR)
betaR <- 25
alphaR <- betaR / var(data$ref / data$tumDepth, na.rm = TRUE)
}else{
alphaK <- 10000
betaK <- 25
alphaR <- 10000
betaR <- 25
}
## Gather all genotype related parameters into a list
genotypeParams <- vector("list", 0)
genotypeParams$rt <- rt
genotypeParams$rn <- rn
genotypeParams$ZS <- ZS
genotypeParams$ct <- ct
## VARIANCE for Gaussian to model copy number, var
genotypeParams$corRho_0 <- corRho_0
genotypeParams$var_0 <- rep(var_base, K)
#genotypeParams$var_0[ct %in% c(2, 4, 8)] <- var_base / 10
genotypeParams$alphaKHyper <- rep(alphaK, K)
genotypeParams$alphaKHyper[ct >= 5] <- alphaK #AMP(11-15),HLAMP(16-21) states
genotypeParams$betaKHyper <- rep(betaK, K)
genotypeParams$alleleEmissionModel <- alleleEmissionModel
## VARIANCE for Gaussian to model allelic fraction, varR
genotypeParams$varR_0 <- rep(var0_base, K)
#genotypeParams$varR_0[hetState] <- var0_base / 10
genotypeParams$alphaRHyper <- rep(alphaR, K)
genotypeParams$betaRHyper <- rep(betaR, K)
genotypeParams$kappaGHyper <- rep(kappaGHyper_base, K) + 1
genotypeParams$kappaGHyper[hetState] <- kappaGHyper_base * 5
genotypeParams$kappaGHyper[ct == 0] <- kappaGHyper_base / 50
genotypeParams$piG_0 <- estimateDirichletParamsMap(genotypeParams$kappaGHyper) #add the outlier state
genotypeParams$outlierVar <- 10000
genotypeParams$symmetric <- symmetric
## NORMAL, n
normalParams <- vector("list", 0)
normalParams$n_0 <- 0.5
normalParams$alphaNHyper <- 2
normalParams$betaNHyper <- 2
#rm(list = c("rt", "rn", "ZS", "ct", "var_0", "kappaGHyper", "skew"))
## PLOIDY, phi
ploidyParams <- vector("list", 0)
ploidyParams$phi_0 <- 2
ploidyParams$alphaPHyper <- 20
ploidyParams$betaPHyper <- 42
## CELLULAR PREVALENCE, s
sParams <- setupClonalParameters(Z = numberClonalClusters)
sParams$piZ_0 <- estimateDirichletParamsMap(sParams$kappaZHyper)
# return
output <- vector("list", 0)
output$genotypeParams <- genotypeParams
output$ploidyParams <- ploidyParams
output$normalParams <- normalParams
output$cellPrevParams <- sParams
return(output)
}
loadAlleleCounts <- function(inCounts, symmetric = TRUE,
genomeStyle = "NCBI", sep = "\t", header = TRUE) {
if (is.character(inCounts)){
## LOAD INPUT READ COUNT DATA
message("titan: Loading data ", inCounts)
data <- read.delim(inCounts, header = header, stringsAsFactors = FALSE,
sep = sep)
if (typeof(data[,2])!="integer" || typeof(data[,4])!="integer" ||
typeof(data[,6])!="integer"){
stop("loadAlleleCounts: Input counts file format does not
match required specifications.")
}
}else if (is.data.frame(inCounts)){ #inCounts is a data.frame
data <- inCounts
}else{
stop("loadAlleleCounts: Must provide a filename or data.frame
to inCounts")
}
## use GenomeInfoDb
#require(GenomeInfoDb)
# convert to desired genomeStyle and only include autosomes, sex chromosomes
data[, 1] <- setGenomeStyle(data[, 1], genomeStyle)
## sort chromosomes
indChr <- orderSeqlevels(as.character(data[, 1]), X.is.sexchrom = TRUE)
data <- data[indChr, ]
## sort positions within each chr
for (x in unique(data[, 1])){
ind <- which(data[, 1] == x)
data[ind, ] <- data[ind[sort(data[ind, 2], index.return = TRUE)$ix], ]
}
refOriginal <- as.numeric(data[, 4])
nonRef <- as.numeric(data[, 6])
tumDepth <- refOriginal + nonRef
if (symmetric) {
ref <- pmax(refOriginal, nonRef)
} else {
ref <- refOriginal
}
return(data.table(chr = as.character(data[, 1]), posn = data[, 2], ref = ref,
refOriginal = refOriginal, nonRef = nonRef,
tumDepth = tumDepth))
}
extractAlleleReadCounts <- function(bamFile, bamIndex,
positions, outputFilename = NULL,
pileupParam = PileupParam()){
#require(Rsamtools)
## read in vcf file of het positions
vcf <- BcfFile(positions)
vcfPosns <- scanBcf(vcf)
## setup the positions of interest to generate the pileup for
which <- GRanges(as.character(vcfPosns$CHROM),
IRanges(vcfPosns$POS, width = 1))
## setup addition BAM filters, such as excluding duplicate reads
sbp <- ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE), which = which)
## generate pileup using function (Rsamtools >= 1.17.11)
## this step can take a while
tumbamObj <- BamFile(bamFile, index = bamIndex)
counts <- pileup(tumbamObj, scanBamParam = sbp, pileupParam = pileupParam)
## set of command to manipulate the "counts" data.frame output
## by pileup() such that multiple nucleotides are in a single
## row rather than in multiple rows.
countsMerge <- xtabs(count ~ which_label + nucleotide, counts)
label <- do.call(rbind, strsplit(rownames(countsMerge), ":"))
posn <- do.call(rbind, strsplit(label[, 2],"-"))
countsMerge <- cbind(data.frame(chr = label[, 1]),
position = posn[, 1], countsMerge[,1:7])
## GET REFERENCE AND NON-REF READ COUNTS
## this block of code is used to match up the reference and
## non-reference nucleotide when assigning read counts
## final output data.frame is "countMat"
## setup output data.frame
countMat <- data.frame(chr = vcfPosns$CHROM,
position = as.numeric(vcfPosns$POS),
ref = vcfPosns$REF, refCount = 0,
Nref = vcfPosns$ALT, NrefCount = 0,
stringsAsFactors = FALSE)
## match rows with vcf positions of interest
countMat <- merge(countMat, countsMerge, by = c("chr","position"),
sort = FALSE, stringsAsFactors = FALSE)
## assign the flattened table of nucleotide counts to ref, Nref
## note that non-reference (Nref) allele is sum of other bases
## that is not matching the ref.
NT <- c("A", "T", "C", "G")
for (n in 1:length(NT)){
indRef <- countMat$ref == NT[n]
countMat[indRef, "refCount"] <- countMat[indRef, NT[n]]
countMat[indRef, "NrefCount"] <- rowSums(countMat[indRef, NT[-n]])
}
## remove "chr" string from chromosome
countMat$chr <- gsub("chr","",countMat$chr)
## only use autosomes and sex chrs
countMat <- countMat[countMat$chr %in% c(as.character(1:22),"X","Y"),]
## only use first 6 columns for TitanCNA
countMat <- countMat[,1:6]
## OUTPUT TO TEXT FILE
if (!is.null(outputFilename)){
## output text file will have the same format required by TitanCNA
message("extractAlleleReadCounts: writing to ", outputFilename)
write.table(countMat, file = outputFilename, row.names = FALSE,
col.names = TRUE, quote = FALSE, sep = "\t")
}
return(countMat)
#return(loadAlleleCounts(countMat))
}
## filter data by depth and mappability. data is a
## logical vector data is a list containing all our
## data: ref, depth, logR, etc.
filterData <- function(data, chrs = NULL, minDepth = 10,
maxDepth = 200, positionList = NULL, map = NULL,
mapThres = 0.9, centromeres = NULL, centromere.flankLength = 0) {
genomeStyle <- seqlevelsStyle(data$chr)
if (!is.null(map)) {
keepMap <- map >= mapThres
} else {
keepMap <- !logical(length = length(data$refOriginal))
}
if (!is.null(positionList)) {
chrPosnList <- paste(positionList[, 1], positionList[,
2], sep = ":") #chr:posn
chrPosnData <- paste(data$chr, data$posn, sep = ":")
keepPosn <- is.element(chrPosnData, chrPosnList)
} else {
keepPosn <- !logical(length = length(data$chr))
}
keepTumDepth <- data$tumDepth <= maxDepth & data$tumDepth >= minDepth
cI <- keepTumDepth & !is.na(data$logR) &
keepMap & keepPosn
data <- data[which(cI), ]
## remove centromere SNPs ##
if (!is.null(centromeres)){
colnames(centromeres)[1:3] <- c("Chr", "Start", "End")
centromeres$Chr <- setGenomeStyle(centromeres$Chr, genomeStyle = genomeStyle[1])
data <- removeCentromere(data, centromeres, flankLength = centromere.flankLength)
}
if (is.null(chrs)){
keepChrs <- logical(length = length(data$chr))
}else{
keepChrs <- is.element(data$chr, chrs)
data <- data[keepChrs, ]
message("Removed Chrs: ", names(which(table(data$chr) < 2)))
data <- data[data$chr %in% names(which(table(data$chr) > 1)), ]
}
return(data)
}
## input:
# 1) data object output by loadAlleleCounts(); 6 element list: chr, posn, ref, refOriginal, nonRef, tumDepth)
# 2) data.frame containing coordinates of centromeres; 4 columns: Chr, Start, End, arbitrary
##
removeCentromere <- function(data, centromere, flankLength = 0){
keepInd <- !logical(length = length(data$chr))
for (c in 1:nrow(centromere)){
ind <- which((data$chr == centromere[c, "Chr"]) &
(data$posn >= (centromere[c, "Start"] - flankLength)) &
(data$posn <= (centromere[c, "End"] + flankLength)))
keepInd[ind] <- FALSE
}
message("Removed ", sum(!keepInd), " centromeric positions")
## remove positions in all elements of list
data <- data[which(keepInd), ]
return(data)
}
## segs is a data.table object
extendSegments <- function(segs, removeCentromeres = FALSE, centromeres = NULL,
extendToTelomeres = FALSE, seqInfo = NULL, chrs = c(1:22, "X", "Y"), genomeStyle = "NCBI"){
newSegs <- copy(segs)
newStartStop <- newSegs[, {totalLen = c(Start[-1], NA) - End
extLen = round(totalLen / 2)
End.ext = c(End[-.N] + round(extLen)[-.N], End[.N])
Start.ext = c(Start[1], End.ext[-.N] + 1)
list(Start=Start.ext, End=End.ext)
}, by=Chromosome]
newSegs[, Start.snp := Start]
newSegs[, End.snp := End]
newSegs[, Start := newStartStop[, Start]]
newSegs[, End := newStartStop[, End]]
stopColInd <- which(names(newSegs) == "End")
setcolorder(newSegs, c(names(newSegs)[1:stopColInd], "Start.snp", "End.snp", names(newSegs)[(stopColInd+1):(ncol(newSegs)-2)]))
if (removeCentromeres){
if (is.null(centromeres)){
stop("If removeCentromeres=TRUE, must provide centromeres data.table object.")
}
message("Removing centromeres from segments.")
newSegs <- removeCentromereSegs(newSegs, centromeres, chrs = chrs, genomeStyle = genomeStyle)
}
if (extendToTelomeres){
if (is.null(seqInfo)){
stop("If extendToTelomeres=TRUE, must provide SeqInfo object with chromosome lengths.")
}
message("Extending segments to telomeres.")
newSegs[, Start.telo := { endCoord = End
endCoord[.N] = seqlengths(seq.info)[seqnames(seqInfo)[.GRP]]
endCoord
}, by=Chromosome]
}
return(copy(newSegs))
}
removeCentromereSegs <- function(segs, centromeres, chrs = c(1:22, "X", "Y"), genomeStyle = "NCBI"){
seqlevelsStyle(chrs) <- genomeStyle
segs <- copy(segs)
for (i in 1:nrow(centromeres)){
x <- as.data.frame(centromeres[i,]);
names(x)[1:3] <- c("Chr","Start","End")
chrInd <- which(segs[, Chromosome == x$Chr])
## start is in centromere ##
## NOT POSSIBLE ##
ind <- which(segs[chrInd, Start >= x$Start & Start <= x$End])
if (length(ind)){
#message("Chr:", i, "Start in centromere.")
# move start to end of centromere
segs[chrInd[ind], Start := x$End + 1]
#segs[chrInd[ind], Length.snp. := NA]
}
## end is in centromere ##
## NOT POSSIBLE ##
ind <- which(segs[chrInd, End >= x$Start & End <= x$End])
if (length(ind)){
#message("Chr:", i, "Stop in centromere.")
# move end to start of centromere
segs[chrInd[ind], End := x$Start - 1]
#segs[chrInd[ind], Length.snp. := NA]
}
## both start and end in centromere ##
## NOT POSSIBLE ##
ind <- which(segs[chrInd, Start >= x$Start & End <= x$End])
if (length(ind)){
#message("Chr:", i, "Seg in centromere.")
# remove segment #
segs <- segs[-chrInd[ind]]
}
## segment spans centromere ##
ind <- which(segs[chrInd, Start <= x$Start & End >= x$End])
if (length(ind)){
#message("Chr:", i, "Seg span centromere.")
# break into 2 segments #
newRegion1 <- copy(segs[chrInd[ind]])
#newRegion1[, Length.snp. := NA]
newRegion2 <- copy(newRegion1)
newRegion1[, End := x$Start - 1] #left segment before centromere
newRegion2[, Start := x$End + 1] #right segment after centromere
# remove old segment and add in 2 new ones
segs <- segs[-chrInd[ind]]
segs <- rbind(segs, newRegion1, newRegion2)
}
}
## re-order the segments ##
segs[, Chromosome := factor(Chromosome, levels = chrs)]
segs <- segs[do.call(order, segs[, c("Chromosome", "Start")])]
return(copy(segs))
}
excludeGarbageState <- function(params, K) {
newParams <- params
for (i in 1:length(newParams)) {
if (length(newParams[[i]]) == K) {
newParams[[i]] <- newParams[[i]][2:K]
}
}
return(newParams)
}
getOverlap <- function(x, y, type = "within", colToReturn = "Copy_Number", method = "common"){
if (!type %in% c("any", "within")){
stop("getOverlap type must be \'any\' or \'within\'.")
}
cn <- rep(NA, nrow(x))
x <- as(x, "GRanges")
y <- as(y, "GRanges")
hits <- findOverlaps(query = x, subject = y, type = type)
cn[queryHits(hits)] <- values(y)[subjectHits(hits), colToReturn]
# find genes split by segment #
runs <- rle(queryHits(hits))
splitInd <- which(runs$lengths > 1)
if (length(splitInd) > 0){ # take the larger overlap
if (method == "common"){
for (i in 1:length(splitInd)){
hitInd <- which(queryHits(hits)==runs$values[splitInd[i]])
ind <- which.max(width(ranges(hits[hitInd], ranges(x), ranges(y))))
cn[unique(queryHits(hits)[hitInd])] <- values(y)[subjectHits(hits)[hitInd][ind], colToReturn]
}
}else{
stop("Method other than 'common' is not yet supported.")
}
}
return(cn)
}
getPositionOverlap <- function(chr, posn, dataVal) {
# use RangedData to perform overlap
dataIR <- RangedData(space = dataVal[[1]],
IRanges(start = dataVal[[2]], end = dataVal[[3]]),
val = dataVal[[4]])
## load chr/posn as data.frame first to use proper chr ordering by factors/levels
chrDF <- data.frame(space=chr, start=posn, end=posn)
chrDF$space <- factor(chrDF$space, levels = unique(chr))
chrIR <- as(chrDF, "RangedData")
hits <- findOverlaps(query = chrIR, subject = dataIR)
## create full dataval list ##
hitVal <- rep(NA, length = length(chr))
hitVal[from(hits)] <- dataIR$val[to(hits)]
#chrIR$hitVal <- hitVal
## reorder to match input chr and posn arguments
#chrDF <- as.data.frame(chrIR)
#indReorder <- order(match(chrDF[, 1], chr))
#return(hitVal[indReorder])
return(hitVal)
}
setGenomeStyle <- function(x, genomeStyle = "NCBI", species = "Homo_sapiens"){
#chrs <- genomeStyles(species)[c("NCBI","UCSC")]
if (!genomeStyle %in% seqlevelsStyle(as.character(x))){
x <- suppressWarnings(mapSeqlevels(as.character(x),
genomeStyle, drop = FALSE)[1,])
}
autoSexMChr <- extractSeqlevelsByGroup(species = species,
style = genomeStyle, group = "all")
x <- x[x %in% autoSexMChr]
return(x)
}
correctReadDepth <- function(tumWig, normWig, gcWig, mapWig,
genomeStyle = "NCBI", targetedSequence = NULL) {
#require(HMMcopy)
message("Reading GC and mappability files")
gc <- wigToRangedData(gcWig)
map <- wigToRangedData(mapWig)
### LOAD TUMOUR AND NORMAL FILES ###
message("Loading tumour file:", tumWig)
tumour_reads <- wigToRangedData(tumWig)
message("Loading normal file:", normWig)
normal_reads <- wigToRangedData(normWig)
### set the genomeStyle: NCBI or UCSC
#require(GenomeInfoDb)
names(gc) <- setGenomeStyle(names(gc), genomeStyle)
names(map) <- setGenomeStyle(names(map), genomeStyle)
names(tumour_reads) <- setGenomeStyle(names(tumour_reads), genomeStyle)
names(normal_reads) <- setGenomeStyle(names(normal_reads), genomeStyle)
### make sure tumour wig and gc/map wigs have same
### chromosomes
gc <- gc[gc$space %in% tumour_reads$space, ]
map <- map[map$space %in% tumour_reads$space, ]
samplesize <- 50000
### for targeted sequencing (e.g. exome capture),
### ignore bins with 0 for both tumour and normal
### targetedSequence = RangedData (IRanges object)
### containing list of targeted regions to consider;
### 3 columns: chr, start, end
if (!is.null(targetedSequence)) {
message("Analyzing targeted regions...")
targetIR <- RangedData(ranges = IRanges(start = targetedSequence[, 2],
end = targetedSequence[, 3]), space = targetedSequence[, 1])
names(targetIR) <- setGenomeStyle(names(targetIR), genomeStyle)
hits <- findOverlaps(query = tumour_reads, subject = targetIR)
keepInd <- unique(queryHits(hits))
tumour_reads <- tumour_reads[keepInd, ]
normal_reads <- normal_reads[keepInd, ]
gc <- gc[keepInd, ]
map <- map[keepInd, ]
samplesize <- min(ceiling(nrow(tumour_reads) *
0.1), samplesize)
}
### add GC and Map data to IRanges objects ###
tumour_reads$gc <- gc$value
tumour_reads$map <- map$value
colnames(tumour_reads) <- c("reads", "gc", "map")
normal_reads$gc <- gc$value
normal_reads$map <- map$value
colnames(normal_reads) <- c("reads", "gc", "map")
### CORRECT TUMOUR DATA FOR GC CONTENT AND
### MAPPABILITY BIASES ###
message("Correcting Tumou!!!!r")
tumour_copy <- correctReadcount(tumour_reads, samplesize = samplesize,verbose=T)
### CORRECT NORMAL DATA FOR GC CONTENT AND
### MAPPABILITY BIASES ###
message("Correcting Normal")
normal_copy <- correctReadcount(normal_reads, samplesize = samplesize)
### COMPUTE LOG RATIO ###
message("Normalizing Tumour by Normal")
tumour_copy$copy <- tumour_copy$copy - normal_copy$copy
rm(normal_copy)
### PUTTING TOGETHER THE COLUMNS IN THE OUTPUT ###
temp <- cbind(chr = as.character(space(tumour_copy)),
start = start(tumour_copy), end = end(tumour_copy),
logR = tumour_copy$copy)
temp <- as.data.frame(temp, stringsAsFactors = FALSE)
mode(temp$start) <- "numeric"
mode(temp$end) <- "numeric"
mode(temp$logR) <- "numeric"
return(temp)
}
setupClonalParameters <- function(Z, sPriorStrength = 2) {
alphaSHyper = rep(sPriorStrength, Z)
betaSHyper = rep(sPriorStrength, Z)
kappaZHyper = rep(1, Z) + 1
# use naive initialization
s_0 <- (1:Z)/10
#s_0 <- seq(0,1-1/Z,1/Z)
## first cluster should be clonally dominant (use
## 0.001) ##
s_0[1] <- 0.001
output <- vector("list", 0)
output$s_0 <- s_0
output$alphaSHyper <- alphaSHyper
output$betaSHyper <- betaSHyper
output$kappaZHyper <- kappaZHyper
return(output)
}
computeBIC <- function(maxLoglik, M, N) {
bic <- -2 * maxLoglik + (M * log(N))
return(bic)
}
computeSDbwIndex <- function(x, centroid.method = "median", data.type = "LogRatio",
S_Dbw.method = "Halkidi", symmetric = TRUE) {
## input x: Titan results dataframe from
## 'outputTitanResults()' S_Dbw Validity Index
## Halkidi and Vazirgiannis (2001). Clustering
## Validity Assessment: Finding the Optimal
## Partition of a Data Set
## AND
## Tong and Tan (2009) Cluster validity based on the
## improved S_Dbw index
if (!data.type %in% c("LogRatio", "AllelicRatio")){
stop("computeSDbwIndex: data.type must be either 'LogRatio' or 'AllelicRatio'")
}
if (!S_Dbw.method %in% c("Halkidi", "Tong")){
stop("computeSDbwIndex: S_Dbw.method must be either 'Halkidi' or 'Tong'")
}
## flatten copynumber-clonalclusters to single vector
if (data.type=="LogRatio"){
cn <- x[, CopyNumber] + 1
cn[cn == 3] <- NA ## remove all CN=2 positions
flatState <- (x[, ClonalCluster] - 1) * (max(cn, na.rm = TRUE)) + cn
flatState[is.na(flatState)] <- 3 ### assign all the CN=2 positions to cluster 3
CNdata <- scale(x[, get(data.type)])
x <- as.matrix(cbind(as.numeric(flatState), CNdata))
}else if (data.type=="AllelicRatio"){
st <- x[, TITANstate] + 1
st[x[, which(TITANcall == "HET")]] <- NA
flatState <- (x[, ClonalCluster] - 1) * (max(st, na.rm = TRUE)) + st
if (symmetric){
flatState[is.na(flatState)] <- 4
}else{
flatState[is.na(flatState)] <- 5
}
## for allelic ratios, compute the symmetric allelic ratio
ARdata <- x[, pmax(get(data.type), 1 - get(data.type))]
ARdata <- scale(ARdata)
x <- as.matrix(cbind(as.numeric(flatState), ARdata))
rm(ARdata)
}
clust <- sort(unique(x[, 1]))
K <- length(clust)
N <- nrow(x)
## find average standard deviation and scatter (compactness)
stdev <- rep(NA, K)
scat.Ci <- rep(NA, K)
for (i in 1:K) {
ind.i <- x[, 1] == clust[i]
ni <- sum(ind.i)
stdev[i] <- var(x[ind.i, 2], na.rm = TRUE)
## compute scatter based on variances within objects
## of a cluster (compactness)
var.Ci <- var(x[ind.i, 2], na.rm = TRUE)
var.D <- var(x[, 2], na.rm = TRUE)
if (S_Dbw.method == "Halkidi"){
scat.Ci[i] <- var.Ci/var.D
}else if (S_Dbw.method == "Tong"){
###### NOTE #######
## The authors originally used ((N-ni)/N), but this is incorrect ##
## We want a weighted-sum ##
scat.Ci[i] <- ((ni) / N) * (var.Ci/var.D)
}
}
avgStdev <- sqrt(sum(stdev, na.rm = TRUE))/K
## compute density between clusters (separation)
sumDensityDiff <- matrix(NA, nrow = K, ncol = K)
for (i in 1:K) {
# cat('Calculating S_Dbw for cluster # ',clust[i],'\n')
ind.i <- x[, 1] == clust[i]
ni <- sum(ind.i)
xci <- x[ind.i, 2]
#density of Ci
sumDiff.xci <- sdbw.density(xci, avgStdev, method = S_Dbw.method,
centroid.method = centroid.method)
for (j in 1:K) {
if (i == j) {
next
}
ind.j <- x[, 1] == clust[j]
nj <- sum(ind.j)
xcj <- x[ind.j, 2]
#density of Cj
sumDiff.xcj <- sdbw.density(xcj, avgStdev, method = S_Dbw.method,
centroid.method = centroid.method)
## union and midpoint of both clusters
x.ci.cj <- union(xci, xcj)
ci <- median(xci, na.rm = TRUE) #centroid of cluster Ci
cj <- median(xcj, na.rm = TRUE) #centroid of cluster Cj
nij <- ni + nj
stdCiCj <- (sd(xci) + sd(xcj)) / 2
if (S_Dbw.method == "Halkidi"){
cij <- (ci + cj)/2
#cij <- median(x.ci.cj, na.rm = TRUE)
}else if (S_Dbw.method == "Tong"){
lambda <- 0.7
cij <- lambda * ((nj * ci + ni * cj) / nij) + (1 - lambda) *
(sumDiff.xci * ci + sumDiff.xcj * cj) /
(sumDiff.xci + sumDiff.xcj)
}
#density of union of both clusters using special centroid
sumDiff.xci.xcj <- sdbw.density(x.ci.cj, avgStdev, stDev = stdCiCj,
method = S_Dbw.method, centroid = cij,
centroid.method = centroid.method)
maxDiff <- max(sumDiff.xci, sumDiff.xcj)
if (maxDiff == 0) {
maxDiff <- 0.1
}
sumDensityDiff[i, j] <- sumDiff.xci.xcj/maxDiff
}
}
if (S_Dbw.method == "Halkidi"){
scat <- sum(scat.Ci, na.rm = TRUE)/(K)
}else if (S_Dbw.method == "Tong"){
scat <- sum(scat.Ci, na.rm = TRUE)/(K - 1)
}
dens.bw <- sum(sumDensityDiff, na.rm = TRUE)/(K * (K - 1))
S_DbwIndex <- scat + dens.bw
# return(S_DbwIndex)
return(list(S_DbwIndex = S_DbwIndex, dens.bw = dens.bw, scat = scat))
}
sdbw.density <- function(x, avgStdev, stDev = NULL, method = "Halkidi",
centroid = NULL, centroid.method = "median"){
if (is.null(centroid)){
if (centroid.method == "median") {
centroid <- median(x, na.rm = TRUE) #centroid of cluster Cj
} else if (centroid.method == "mean") {
centroid <- mean(x, na.rm = TRUE) #centroid of cluster Cj
}
}
#density of Ci
if (method == "Halkidi"){
sumDiff <- sum(abs(x - centroid) <= avgStdev, na.rm = TRUE)
}else if (method == "Tong"){
if (is.null(stDev)){
stDev <- sd(x, na.rm = TRUE)
}
conf.int <- 1.96 * (stDev / sqrt(length(x)))
sumDiff <- sum(abs(x - centroid) <= conf.int, na.rm = TRUE)
}
return(sumDiff)
}
# G = sequence of states for mega-variable K =
# number of unit states per cluster excluding
# outlier state precondition: If outlierState is
# included, it must be at G=1, else HOMD is G=1
decoupleMegaVar <- function(G, K, useOutlierState = FALSE) {
if (useOutlierState) {
G <- G - 1 #do this to make OUT=0 and HOMD=1
G[G == 0] <- NA #assign NA to OUT states
}
newG <- G%%K
newG[newG == 0] <- K
newG[is.na(newG)] <- 0
newZ <- ceiling(G/K)
output <- vector("list", 0)
output$G <- newG
output$Z <- newZ
return(output)
}
# pre-condition: outlier state is -1 if included
decodeLOH <- function(G, symmetric = TRUE) {
T <- length(G)
Z <- rep("NA", T)
CN <- rep(NA, T)
if (symmetric) {
DLOH <- G == 1
NLOH <- G == 2
ALOH <- G == 4 | G == 6 | G == 9 | G == 12 |
G == 16 | G == 20
HET <- G == 3
GAIN <- G == 5
ASCNA <- G == 7 | G == 10 | G == 13 | G ==
17 | G == 21
BCNA <- G == 8 | G == 15 | G == 24
UBCNA <- G == 11 | G == 14 | G == 18 | G ==
19 | G == 22 | G == 23
} else {
DLOH <- G == 1 | G == 2
NLOH <- G == 3 | G == 5
ALOH <- G == 6 | G == 9 | G == 10 | G == 14 |
G == 15 | G == 20 | G == 22 | G == 28 |
G == 29 | G == 36 | G == 37 | G == 45
HET <- G == 4
GAIN <- G == 7 | G == 8
ASCNA <- G == 11 | G == 13 | G == 16 | G ==
19 | G == 23 | G == 27 | G == 30 | G ==
35 | G == 38 | G == 44
BCNA <- G == 12 | G == 25 | G == 41
UBCNA <- G == 17 | G == 18 | G == 24 | G ==
26 | G == 31 | G == 32 | G == 33 | G ==
34 | G == 39 | G == 40 | G == 42 | G ==
43
}
HOMD <- G == 0
OUT <- G == -1
Z[HOMD] <- "HOMD"
Z[DLOH] <- "DLOH"
Z[NLOH] <- "NLOH"
Z[ALOH] <- "ALOH"
Z[HET] <- "HET"
Z[GAIN] <- "GAIN"
Z[ASCNA] <- "ASCNA"
Z[BCNA] <- "BCNA"
Z[UBCNA] <- "UBCNA"
Z[OUT] <- "OUT"
if (symmetric) {
CN[HOMD] <- 0
CN[DLOH] <- 1
CN[G >= 2 & G <= 3] <- 2
CN[G >= 4 & G <= 5] <- 3
CN[G >= 6 & G <= 8] <- 4
CN[G >= 9 & G <= 11] <- 5
CN[G >= 12 & G <= 15] <- 6
CN[G >= 16 & G <= 19] <- 7
CN[G >= 20 & G <= 24] <- 8
} else {
CN[HOMD] <- 0
CN[DLOH] <- 1
CN[G >= 3 & G <= 5] <- 2
CN[G >= 6 & G <= 9] <- 3
CN[G >= 10 & G <= 14] <- 4
CN[G >= 15 & G <= 20] <- 5
CN[G >= 21 & G <= 28] <- 6
CN[G >= 29 & G <= 36] <- 7
CN[G >= 37 & G <= 45] <- 8
}
output <- vector("list", 0)
output$G <- Z
output$CN <- CN
return(output)
}
outputTitanResults <- function(data, convergeParams,
optimalPath, filename = NULL, is.haplotypeData = FALSE, posteriorProbs = FALSE,
subcloneProfiles = TRUE, correctResults = TRUE, proportionThreshold = 0.05,
proportionThresholdClonal = 0.05, recomputeLogLik = TRUE, rerunViterbi = FALSE, verbose = TRUE) {
# check if useOutlierState is in convergeParams
if (length(convergeParams$useOutlierState) == 0) {
stop("convergeParams does not contain element: useOutlierState.")
}
useOutlierState <- convergeParams$useOutlierState
# check if symmetric is in convergeParams
if (length(convergeParams$symmetric) == 0) {
stop("convergeParams does not contain element: symmetric.")
}
## PROCESS HMM RESULTS
numClust <- dim(convergeParams$s)[1]
K <- dim(convergeParams$var)[1]
if (useOutlierState) {
K <- K - 1
}
Z <- dim(convergeParams$s)[1]
i <- dim(convergeParams$s)[2] #iteration of training to use (last iteration)
partGZ <- decoupleMegaVar(optimalPath, K, useOutlierState)
G <- partGZ$G - 1 #assign analyzed points, minus 2 so HOMD=0
sortS <- sort(convergeParams$s[, i], decreasing = FALSE,
index.return = TRUE)
s <- sortS$x
Zclust <- partGZ$Z #assign analyzed points
Zclust <- sortS$ix[Zclust] #reassign sorted cluster membership
### OUTPUT RESULTS #### Output Z ##
Gdecode <- decodeLOH(G, symmetric = convergeParams$symmetric)
Gcalls <- Gdecode$G
CN <- Gdecode$CN
Zclust[Gcalls == "HET" & CN == 2] <- NA #diploid HET positions do not have clusters
Sout <- rep(NA, length(Zclust)) #output cluster frequencies
Sout[Zclust > 0 & !is.na(Zclust)] <- s[Zclust[Zclust >
0 & !is.na(Zclust)]]
Sout[Zclust == 0] <- 0
clonalHeaderStr <- rep(NA, Z)
for (j in 1:Z) {
clonalHeaderStr[j] <- sprintf("pClust%d", j)
}
outmat <- data.table(Chr = data$chr, Position = data$posn, RefCount = data$refOriginal)
if (is.haplotypeData){
outmat <- cbind(outmat, NRefCount = data$tumDepthOriginal - data$refOriginal,
Depth = data$tumDepthOriginal,
AllelicRatio = data$refOriginal/data$tumDepthOriginal,
HaplotypeCount = data$ref, #data$haplotypeCount,
HaplotypeDepth = data$tumDepth,
#HaplotypeRatio = sprintf("%0.2f", data$haplotypeCount/data$tumDepth),
HaplotypeRatio = data$HaplotypeRatio,
PhaseSet = data$phaseSet)
}else{
outmat <- cbind(outmat, Depth = data$tumDepth,
AllelicRatio = data$refOriginal/data$tumDepth)
}
outmat <- cbind(outmat, LogRatio = log2(exp(data$logR)),
CopyNumber = CN, TITANstate = G, TITANcall = Gcalls,
ClonalCluster = Zclust, CellularPrevalence = 1 - Sout)
## filter results to remove empty clusters or set normal contamination to 1.0 if few events
if (correctResults){
if (verbose)
message("outputTitanResults: Correcting results...")
corrResults <- removeEmptyClusters(data, convergeParams, outmat,
proportionThreshold = proportionThreshold,
proportionThresholdClonal = proportionThresholdClonal,
recomputeLogLik = recomputeLogLik, verbose = verbose)
#rerunViterbi = rerunViterbi, subcloneProfiles = subcloneProfiles, is.haplotypeData = is.haplotypeData)
outmatOriginal <- outmat
outmat <- corrResults$results
convergeParams <- corrResults$convergeParams
}else{
corrResults <- NULL
}
## INCLUDE SUBCLONE PROFILES
if (subcloneProfiles & numClust <= 2){
#outmat <- as.data.frame(outmat, stringsAsFactors = FALSE)
outmat <- cbind(outmat, getSubcloneProfiles(outmat))
}else{
message("outputTitanResults: More than 2 clusters or subclone profiles not requested.")
}
if (posteriorProbs) {
rhoG <- t(convergeParams$rhoG)
rhoZ <- t(convergeParams$rhoZ)
rhoZ <- rhoZ[, sortS$ix, drop = FALSE]
colnames(rhoZ) <- clonalHeaderStr
outmat <- cbind(outmat, format(round(rhoZ, 4),
nsmall = 4, scientific = FALSE), format(round(rhoG, 4),
nsmall = 4, scientific = FALSE))
}
if (!is.null(filename)) {
message("titan: Writing results to ", filename)
write.table(format(outmat, digits = 2, scientific = FALSE), file = filename, col.names = TRUE,
row.names = FALSE, quote = FALSE, sep = "\t")
}
if (correctResults){
corrmat <- outmat
outmat <- outmatOriginal
}else{
corrmat <- NULL
}
return(list(results = outmat, corrResults = corrmat, convergeParams = convergeParams))
}
outputModelParameters <- function(convergeParams, results, filename,
S_Dbw.scale = 1, S_Dbw.method = "Tong") {
message("titan: Saving parameters to ", filename)
Z <- dim(convergeParams$s)[1]
i <- dim(convergeParams$s)[2] #iteration of training to use (last iteration)
sortS <- sort(convergeParams$s[, i], decreasing = FALSE,
index.return = TRUE)
s <- sortS$x
fc <- file(filename, "w+")
norm_str <- paste0("Normal contamination estimate:\t", signif(convergeParams$n[i], digits = 4))
write.table(norm_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "", append = TRUE)
ploid_str <- paste0("Average tumour ploidy estimate:\t", signif(convergeParams$phi[i], digits = 4))
write.table(ploid_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "", append = TRUE)
s_str <- signif(1 - s, digits = 4)
s_str <- gsub(" ", "", s_str)
outStr <- paste0("Clonal cluster cellular prevalence Z=", Z , ":\t", paste(s_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "", append = TRUE)
for (j in 1:Z) {
musR_str <- signif(convergeParams$muR[, j, i], digits = 4)
musR_str <- gsub(" ", "", musR_str)
outStr <- paste0("AllelicRatio ", convergeParams$genotypeParams$alleleEmissionModel,
" means for clonal cluster Z=", j, ":\t", paste(musR_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
musC_str <- signif(log2(exp(convergeParams$muC[, j, i])), digits = 4)
musC_str <- gsub(" ", "", musC_str)
outStr <- paste0("logRatio Gaussian means for clonal cluster Z=", j, ":\t",paste(musC_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
}
if (convergeParams$genotypeParams$alleleEmissionModel == "Gaussian"){
varR_str <- signif(convergeParams$varR[, i], digits = 4)
varR_str <- gsub(" ", "", varR_str)
outStr <- paste0("AllelicRatio Gaussian variance:\t", paste(varR_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "", append = TRUE)
}
var_str <- signif(convergeParams$var[, i], digits = 4)
var_str <- gsub(" ", "", var_str)
outStr <- paste0("logRatio Gaussian variance:\t", paste(var_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "", append = TRUE)
iter_str <- paste0("Number of iterations:\t", length(convergeParams$phi))
write.table(iter_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
loglik_str <- signif(convergeParams$loglik[i], digits = 4)
loglik_str <- gsub(" ", "", loglik_str)
outStr <- paste0("Log likelihood:\t", paste(loglik_str, collapse = " "))
write.table(outStr, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
# compute SDbw_index
sdbw.LR <- computeSDbwIndex(results, centroid.method = "median",
data.type = "LogRatio",
S_Dbw.method = S_Dbw.method,
symmetric = convergeParams$symmetric)
sdbw.AR <- computeSDbwIndex(results, centroid.method = "median",
data.type = "AllelicRatio",
S_Dbw.method = S_Dbw.method,
symmetric = convergeParams$symmetric)
## element-wise addition -> returns list
## add the values for allelicRatio and logRatio
sdbw <- mapply('+', sdbw.LR, sdbw.AR, SIMPLIFY = FALSE)
## print out combined S_Dbw ##
printSDbw(sdbw.LR, fc, S_Dbw.scale, "LogRatio")
printSDbw(sdbw.AR, fc, S_Dbw.scale, "AllelicRatio")
printSDbw(sdbw, fc, S_Dbw.scale, "Both")
close(fc)
return(list(dens.bw = sdbw$dens.bw, scat = sdbw$scat,
S_Dbw = S_Dbw.scale * sdbw$dens.bw + sdbw$scat))
}
outputTitanSegments <- function(results, id, convergeParams, filename = NULL, igvfilename = NULL){
# get all possible states in this set of results
#stateTable <- unique(results[, c("TITANstate", "TITANcall")])
#rownames(stateTable) <- stateTable[, 1]
rleResults <- t(sapply(unique(results$Chr), function(x){
ind <- results$Chr == x
r <- rle(results$TITANstate[ind])
}))
rleLengths <- unlist(rleResults[, "lengths"])
rleValues <- unlist(rleResults[, "values"])
numSegs <- length(rleLengths)
# convert allelic ratio to symmetric ratios #
results$AllelicRatio <- pmax(results$AllelicRatio, 1-results$AllelicRatio)
if (!is.null(results$HaplotypeRatio)){
results$HaplotypeRatio <- pmax(results$HaplotypeRatio, 1-results$HaplotypeRatio)
}
segs <- data.table(Sample = character(), Chromosome = character(), Start_Position.bp. = integer(),
End_Position.bp. = integer(), Length.snp. = integer(), Median_Ratio = numeric(),
Median_HaplotypeRatio = numeric(), Median_logR = numeric(), TITAN_state = integer(),
TITAN_call = character(), Copy_Number = integer(), MinorCN = integer(), MajorCN = integer(),
Clonal_Cluster = integer(), Cellular_Frequency = numeric())[1:numSegs]
segs[, Sample := id]
#colNames <- c("Chr", "Position", "TITANstate", "AllelicRatio", "LogRatio")
prevInd <- 0
for (j in 1:numSegs){
start <- prevInd + 1
end <- prevInd + rleLengths[j]
segDF <- results[start:end, ]
prevInd <- end
numR <- nrow(segDF)
segs[j, "Chromosome"] <- as.character(segDF[1, "Chr"])
segs[j, "Start_Position.bp."] <- segDF[1, "Position"]
segs[j, "TITAN_state"] <- rleValues[j]
segs[j, "TITAN_call"] <- segDF[1, "TITANcall"]#stateTable[as.character(rleValues[j]), 2]
segs[j, "Copy_Number"] <- segDF[1, "CopyNumber"]
segs[j, "Median_Ratio"] <- round(median(segDF$AllelicRatio, na.rm = TRUE), digits = 6)
segs[j, "Median_logR"] <- round(median(segDF$LogRatio, na.rm = TRUE), digits = 6)
segs[j, "MinorCN"] <- getMajorMinorCN(rleValues[j], convergeParams$symmetric)$majorCN
segs[j, "MajorCN"] <- getMajorMinorCN(rleValues[j], convergeParams$symmetric)$minorCN
segs[j, "Clonal_Cluster"] <- segDF[1, "ClonalCluster"]
segs[j, "Cellular_Frequency"] <- segDF[1, "CellularPrevalence"]
if (!is.null(segDF$HaplotypeRatio)){
segs[j, "Median_HaplotypeRatio"] <- round(median(segDF$HaplotypeRatio, na.rm = TRUE), digits = 6)
}else{
segs[j, "Median_HaplotypeRatio"] <- NA
}
if (segDF[1, "Chr"] == segDF[numR, "Chr"]){
segs[j, "End_Position.bp."] <- segDF[numR, "Position"]
segs[j, "Length.snp."] <- numR
}else{ # segDF contains 2 different chromosomes
print(j)
}
}
if (!is.null(filename)){
# write out detailed segment file #
#write.table(segs, file = filename, col.names = TRUE, row.names = FALSE, quote = FALSE, sep = "\t")
fwrite(segs, file = filename, sep = "\t")
}
# write out IGV seg file #
if (!is.null(igvfilename)){
igv <- segs[, c("Sample", "Chromosome", "Start_Position.bp.",
"End_Position.bp.", "Length.snp.", "Median_logR")]
colnames(igv) <- c("sample", "chr", "start", "end", "num.snps", "median.logR")
#write.table(igv, file = igvfilename, col.names = TRUE, row.names = FALSE, quote = FALSE, sep = "\t")
fwrite(igv, file = igvfilename, sep = "\t")
}
return(segs)
}
## merge segments based on same values in given column
mergeSegsByCol <- function(segs, colToMerge = "Copy_Number", centromeres = NULL){
rleResults <- t(sapply(unique(segs$Chr), function(x){
ind <- segs$Chr == x
r <- rle(segs[ind, get(colToMerge)])
}))
rleLengths <- unlist(rleResults[, "lengths"])
rleValues <- unlist(rleResults[, "values"])
numSegs <- length(rleLengths)
newSegs <- NULL
prevInd <- 0
for (j in 1:numSegs){
start <- prevInd + 1
end <- prevInd + rleLengths[j]
segDF <- segs[start:end, ]
prevInd <- end
numR <- nrow(segDF)
newSegs <- rbind(newSegs, segDF[1,])
newSegs[j, (colToMerge) := rleValues[j]]
newSegs[j, Median_Ratio := round(median(segDF$Median_Ratio, na.rm = TRUE), digits = 6)]
newSegs[j, Median_logR := round(median(segDF$Median_logR, na.rm = TRUE), digits = 6)]
if (segDF[1, "Chromosome"] == segDF[numR, "Chromosome"]){
newSegs[j, End := segDF[numR, End]]
newSegs[j, Length.snp. := sum(segDF$Length.snp.)]
}else{ # segDF contains 2 different chromosomes
print(j)
}
}
if (!is.null(centromeres)){
message("Removing centromeres from segments.")
newSegs <- removeCentromereSegs(newSegs, centromeres)
}
return(copy(newSegs))
}
## Recompute integer CN for high-level amplifications ##
## compute logR-corrected copy number ##
correctIntegerCN <- function(cn, segs, purity, ploidy, maxCNtoCorrect.autosomes = NULL,
maxCNtoCorrect.X = NULL, minPurityToCorrect = 0.2, gender = "male", chrs = c(1:22, "X")){
names <- c("HOMD","HETD","NEUT","GAIN","AMP","HLAMP", rep("HLAMP", 1000))
cn <- copy(cn)
segs <- copy(segs)
## set up chromosome style
autosomeStr <- grep("X|Y", chrs, value=TRUE, invert=TRUE)
chrXStr <- grep("X", chrs, value=TRUE)
if (is.null(maxCNtoCorrect.autosomes)){
maxCNtoCorrect.autosomes <- segs[Chromosome %in% autosomeStr, max(Copy_Number, na.rm=TRUE)]
}
if (is.null(maxCNtoCorrect.X) & gender == "female" & length(chrXStr) > 0){
maxCNtoCorrect.X <- segs[Chromosome == chrXStr, max(Copy_Number, na.rm=TRUE)]
}
segs[Chromosome %in% chrs, logR_Copy_Number := logRbasedCN(Median_logR, purity, ploidy, cn=2)]
cn[Chr %in% autosomeStr, logR_Copy_Number := logRbasedCN(LogRatio, purity, ploidy, cn=2)]
if (gender == "male" & length(chrXStr) > 0){ ## analyze chrX separately
segs[Chromosome == chrXStr, logR_Copy_Number := logRbasedCN(Median_logR, purity, ploidy, cn=1)]
cn[Chr == chrXStr, logR_Copy_Number := logRbasedCN(LogRatio, purity, ploidy, cn=1)]
}
## assign copy number to use - Corrected_Copy_Number and Corrected_Call
# same TITAN calls for autosomes - no change in copy number
segs[Chromosome %in% chrs & Copy_Number < maxCNtoCorrect.autosomes, Corrected_Copy_Number := as.integer(Copy_Number)]
segs[Chromosome %in% chrs & Copy_Number < maxCNtoCorrect.autosomes, Corrected_Call := TITAN_call]
cn[Chr %in% chrs & CopyNumber < maxCNtoCorrect.autosomes, Corrected_Copy_Number := as.integer(CopyNumber)]
cn[Chr %in% chrs & CopyNumber < maxCNtoCorrect.autosomes, Corrected_Call := TITANcall]
# TITAN calls adjusted for >= copies - HLAMP
segs[Chromosome %in% chrs & Copy_Number >= maxCNtoCorrect.autosomes, Corrected_Copy_Number := as.integer(round(logR_Copy_Number))]
segs[Chromosome %in% chrs & Copy_Number >= maxCNtoCorrect.autosomes, Corrected_Call := "HLAMP"]
cn[Chr %in% chrs & CopyNumber >= maxCNtoCorrect.autosomes, Corrected_Copy_Number := as.integer(round(logR_Copy_Number))]
cn[Chr %in% chrs & CopyNumber >= maxCNtoCorrect.autosomes, Corrected_Call := "HLAMP"]
# Add corrected calls for bins with CopyNumber = NA (ie. not included in TITAN analysis)
cn[Chr %in% chrs & is.na(CopyNumber), Corrected_Copy_Number := as.integer(round(logR_Copy_Number))]
cn[Chr %in% chrs & is.na(TITANcall), Corrected_Call := names[Corrected_Copy_Number + 1]]
# Adjust chrX copy number if purity is sufficiently high
if (purity >= minPurityToCorrect){
if (gender == "male" & length(chrXStr) > 0){
segs[Chromosome == chrXStr, Corrected_Copy_Number := round(logR_Copy_Number)]
segs[Chromosome == chrXStr, Corrected_Call := names[Corrected_Copy_Number + 1]]
cn[Chr == chrXStr, Corrected_Copy_Number := round(logR_Copy_Number)]
cn[Chr == chrXStr, Corrected_Call := names[Corrected_Copy_Number + 2]]
}else if (gender == "female"){
segs[Chromosome == chrXStr & Copy_Number >= maxCNtoCorrect.X, Corrected_Copy_Number := as.integer(round(logR_Copy_Number))]
segs[Chromosome == chrXStr & Copy_Number >= maxCNtoCorrect.X, Corrected_Call := "HLAMP"]
cn[Chr == chrXStr & CopyNumber >= maxCNtoCorrect.X, Corrected_Copy_Number := as.integer(round(logR_Copy_Number))]
cn[Chr == chrXStr & CopyNumber >= maxCNtoCorrect.X, Corrected_Call := "HLAMP"]
}
}
return(list(cn = copy(cn), segs = copy(segs)))
}
## compute copy number using corrected log ratio ##
logRbasedCN <- function(x, purity, ploidyT, cn = 2){
ct <- (2^x * (cn * (1 - purity) + purity * ploidyT * (cn / 2)) - cn * (1 - purity)) / purity
ct <- sapply(ct, max, 1/2^6)
return(ct)
}
getMajorMinorCN <- function(state, symmetric = TRUE){
majorCN <- NA
minorCN <- NA
if (symmetric){
if (state==0){
majorCN = 0; minorCN = 0;
}else if (state==1){
majorCN = 0; minorCN = 1;
}else if(state==2){
majorCN = 0; minorCN = 2;
}else if (state==3){
majorCN = 1; minorCN = 1;
}else if (state==4){
majorCN = 0; minorCN = 3;
}else if (state==5){
majorCN = 1; minorCN = 2;
}else if (state==6){
majorCN = 0; minorCN = 4;
}else if (state==7){
majorCN = 1; minorCN = 3;
}else if (state==8){
majorCN = 2; minorCN = 2;
}else if (state==9){
majorCN = 0; minorCN = 5;
}else if (state==10){
majorCN = 1; minorCN = 4;
}else if (state==11){
majorCN = 2; minorCN = 3;
}else if (state==12){
majorCN = 0; minorCN = 6;
}else if (state==13){
majorCN = 1; minorCN = 5;
}else if (state==14){
majorCN = 2; minorCN = 4;
}else if (state==15){
majorCN = 3; minorCN = 3;
}else if (state==16){
majorCN = 0; minorCN = 7;
}else if (state==17){
majorCN = 1; minorCN = 6;
}else if (state==18){
majorCN = 2; minorCN = 5;
}else if (state==19){
majorCN = 3; minorCN = 4;
}else if (state==20){
majorCN = 0; minorCN = 8;
}else if (state==21){
majorCN = 1; minorCN = 7;
}else if (state==22){
majorCN = 2; minorCN = 6;
}else if (state==23){
majorCN = 3; minorCN = 5;
}else if (state==24){
majorCN = 4; minorCN = 4;
}
}else{
#stop("symmetric=FALSE not yet supported.")
}
return(list(majorCN = majorCN, minorCN = minorCN))
}
printSDbw <- function(sdbw, fc, scale, data.type = ""){
sdbw_str <- sprintf("S_Dbw dens.bw (%s):\t%0.4f ", data.type, sdbw$dens.bw)
write.table(sdbw_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
sdbw_str <- sprintf("S_Dbw scat (%s):\t%0.4f ", data.type, sdbw$scat)
write.table(sdbw_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
sdbw_str <- sprintf("S_Dbw validity index (%s):\t%0.4f ",
data.type, scale * sdbw$dens.bw + sdbw$scat)
write.table(sdbw_str, file = fc, col.names = FALSE,
row.names = FALSE, quote = FALSE, sep = "",
append = TRUE)
}
## TODO: Add documentation
removeEmptyClusters <- function(data, convergeParams, results, proportionThreshold = 0.001,
proportionThresholdClonal = 0.05, recomputeLogLik = TRUE, verbose = TRUE){
#rerunViterbi = TRUE, subcloneProfiles = FALSE, is.haplotypeData = FALSE){
clust <- 1:nrow(convergeParams$s)
names(clust) <- clust
#newClust <- clust #original clusters
for (cl in clust){
ind <- which(results$ClonalCluster == cl)
if (length(ind) / nrow(results) < proportionThreshold ||
(length(ind) / nrow(results) < proportionThresholdClonal && cl == 1)){
#newClust <- newClust[-which(names(newClust) == cl)]
clust[cl] <- NA #assign cluster without sufficient data with NA
}
}
k <- ncol(convergeParams$s)
# sort the cellular prevalence since they are sorted in "results"
convergeParams$s <- convergeParams$s[order(convergeParams$s[, k], decreasing = FALSE), , drop = FALSE]
# if there is at least 1 cluster with sufficient data
if (length(which(clust > 0)) > 0){
#set new normal estimate as cluster 1 -> lowers purity from original estimate
clustToKeep <- which(!is.na(clust))
purity <- (1 - convergeParams$s[clustToKeep[1], k]) * (1 - convergeParams$n[k])
convergeParams$n[k] <- 1 - purity
#set new cellular prevalence using new clusters and renormalize to new cluster 1
convergeParams$s <- convergeParams$s[clustToKeep, , drop = FALSE]
convergeParams$s[, k] <- 1 - (1 - convergeParams$s[, k]) / (1 - convergeParams$s[1, k])
convergeParams$piZ <- convergeParams$piZ[clustToKeep, , drop = FALSE]
convergeParams$rhoZ <- convergeParams$rhoZ[clustToKeep, , drop = FALSE]
convergeParams$muC <- convergeParams$muC[, clustToKeep, , drop = FALSE]
convergeParams$muR <- convergeParams$muR[, clustToKeep, , drop = FALSE]
convergeParams$cellPrevParams <- lapply(convergeParams$cellPrevParams, "[", clustToKeep)
#names(newClust) <- 1:length(newClust)
clust[!is.na(clust)] <- 1:sum(!is.na(clust))
#set new cellular prevalence and clonal cluster in results file
for (cl in 1:length(clust)){
# assign data in removed cluster cl to next non-NA cluster
if (is.na(clust[cl])){
# assign to the right (larger cluster number)
if (length(which(!is.na(clust) & names(clust) > cl)) > 0){
results[which(results$ClonalCluster == names(clust)[cl]), "CellularPrevalence"] <- 1 - convergeParams$s[clust[which(!is.na(clust) & names(clust) > cl)[1]], k]
results[which(results$ClonalCluster == names(clust)[cl]), "ClonalCluster"] <- clust[which(!is.na(clust) & names(clust) > cl)][1]
# assign to the left (smaller cluster number)
}else if (length(which(!is.na(clust) & names(clust) < cl)) > 0){
results[which(results$ClonalCluster == names(clust)[cl]), "CellularPrevalence"] <- 1 - convergeParams$s[clust[tail(which(!is.na(clust) & names(clust) < cl), 1)], k]
results[which(results$ClonalCluster == names(clust)[cl]), "ClonalCluster"] <- clust[tail(which(!is.na(clust) & names(clust) < cl), 1)]
}
}else{ # update cluster and cellPrev info for kept clusters
results[which(results$ClonalCluster == names(clust)[cl]), "CellularPrevalence"] <- 1 - convergeParams$s[clust[cl], k]
results[which(results$ClonalCluster == names(clust)[cl]), "ClonalCluster"] <- clust[cl]
}
}
}else{ # no clusters with sufficient data
# set params to only cluster with data or to default cluster01 if no cluster with data
clustData <- which.max(table(results$ClonalCluster))
if (length(clustData) >= 0){
clustData <- 1
}
#set normal contamination to 100%
convergeParams$n[k] <- 1 - convergeParams$s[clustData, k]
convergeParams$s <- convergeParams$s[clustData, , drop = FALSE]
convergeParams$s[, k] <- 0.0
convergeParams$cellPrevParams <- lapply(convergeParams$cellPrevParams, "[", clustData)
# set all clusters to 1 and all cellular prevalence to 1.0; leave HET as NA
results[which(results$TITANcall != "HET"), "CellularPrevalence"] <- 1
results[which(results$TITANcall != "HET"), "ClonalCluster"] <- 1
}
# rerun viterbi with new adjusted param settings
#if (rerunViterbi){
# optimalPath <- viterbiClonalCN(data,convergeParams)
# newResults <- outputTitanResults(data,convergeParams,optimalPath,
# filename=NULL,posteriorProbs=F,subcloneProfiles=subcloneProfiles,
# correctResults=FALSE, proportionThreshold = 0, is.haplotypeData=is.haplotypeData,
# proportionThresholdClonal = 0, rerunViterbi = FALSE, recomputeLogLik = FALSE)
# results <- newResults$results
#}
if (recomputeLogLik){
if (verbose)
message("outputTitanResults: Recomputing log-likelihood.")
newParams <- convergeParams
iter <- length(newParams$n)
newNumClust <- nrow(newParams$s)
newParams$genotypeParams$var_0 <- newParams$var[, iter]
newParams$genotypeParams$varR_0 <- newParams$varR[, iter]
newParams$genotypeParams$piG_0 <- newParams$piG[, iter]
newParams$normalParams$n_0 <- newParams$n[iter]
newParams$ploidyParams$phi_0 <- newParams$phi[iter]
newParams$cellPrevParams$s_0 <- newParams$s[, iter]
newParams$cellPrevParams$piZ_0 <- newParams$piZ[1:newNumClust, iter]
p <- runEMclonalCN(data, newParams, maxiter=1, txnExpLen=convergeParams$txn_exp_len,
txnZstrength=convergeParams$txn_z_strength, useOutlierState=FALSE,
normalEstimateMethod="fixed", estimateS=FALSE,estimatePloidy=F, verbose=verbose)
convergeParams$loglik[iter] <- tail(p$loglik, 1)
convergeParams$muC[, , iter] <- p$muC[, , 2]
convergeParams$muR[, , iter] <- p$muR[, , 2]
convergeParams$rhoZ <- p$rhoZ
convergeParams$rhoG <- p$rhoG
}
return(list(convergeParams = convergeParams, results = results))
}
getSubcloneProfiles <- function(titanResults){
if (is.character(titanResults)){
titanResults <- read.delim(titanResults, header = TRUE,
stringsAsFactors = FALSE, sep = "\t")
}else if (!is.data.frame(titanResults)){
stop("getSubcloneProfiles: titanResults is not character or
data.frame.")
}
clonalClust <- titanResults$ClonalCluster
clonalClust[is.na(clonalClust)] <- 0
numClones <- as.numeric(max(clonalClust, na.rm = TRUE))
if (is.na(numClones)){ numClones <- 0 }
cellPrev <- unique(cbind(Cluster = titanResults$ClonalCluster,
Prevalence = titanResults$CellularPrevalence))
if (numClones == 0 || is.infinite(numClones)){
subc1 <- data.table(cbind(CopyNumber = as.numeric(titanResults$CopyNumber),
TITANcall = titanResults$TITANcall, Prevalence = "NA"))
}
if (numClones == 1){
subc1Prev <- cellPrev[which(cellPrev[, "Cluster"] == "1"), "Prevalence"]
subc1 <- data.table(cbind(CopyNumber = as.numeric(titanResults$CopyNumber),
TITANcall = titanResults$TITANcall,
Prevalence = as.numeric(subc1Prev)))
}
if (numClones == 2){
subc2Prev <- as.numeric(cellPrev[which(cellPrev[, "Cluster"] == "2"),
"Prevalence"])
subc1Prev <- as.numeric(cellPrev[which(cellPrev[, "Cluster"] == "1"),
"Prevalence"])
subc1Prev <- subc1Prev - subc2Prev
subc2 <- data.table(CopyNumber = as.numeric(titanResults$CopyNumber),
TITANcall = titanResults$TITANcall, Prevalence = as.numeric(subc2Prev))
#mode(subc2[, 1]) <- "numeric"; mode(subc2[, 3]) <- "numeric"
subc1 <- copy(subc2)
ind <- which(titanResults$ClonalCluster == 2)
subc1[ind, CopyNumber := 2]
subc1[ind, TITANcall := "HET"]
subc1[, "Prevalence"] <- subc1Prev
}
## Add subclone 1, 2 and 3 if they are defined
outMat <- data.table(Subclone1 = subc1)
if (exists("subc2")){
outMat <- cbind(outMat, Subclone2 = subc2)
}
#if (exists("subc3")){
# outMat <- cbind(outMat, Subclone3 = subc3, stringsAsFactors = FALSE)
#}
return(outMat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.