inst/app/server/getmolecular.R

#-------------------------------------------------------------------------
#                            TCGA Search
#-------------------------------------------------------------------------
#--------------------- START controlling show/hide states ----------------
observeEvent(input$clinicalIndexed, {
    if(input$clinicalIndexed){
        shinyjs::hide("tcgaClinicalFilter")
    } else {
        shinyjs::show("tcgaClinicalFilter")
    }
})
query.result <-  reactive({
    input$tcgaSearchBt # the trigger
    #------------------- STEP 1: Argument-------------------------
    # Set arguments for GDCquery, if value is empty we will set it to FALSE (same as empty)
    tumor <- isolate({input$tcgaProjectFilter})
    if(str_length(tumor) == 0)  tumor <- NULL

    data.category <- isolate({input$tcgaDataCategoryFilter})
    if(str_length(data.category) == 0)  data.category <- NULL

    # Data type
    data.type <- isolate({input$tcgaDataTypeFilter})
    if(str_length(data.type) == 0) data.type <- FALSE

    # platform
    platform <- isolate({input$tcgaPlatformFilter})
    if(str_length(platform) == 0) platform <- FALSE

    # workflow
    workflow.type <- isolate({input$tcgaWorkFlowFilter})
    if(str_length(workflow.type) == 0) workflow.type <- FALSE

    # file.type
    file.type <- isolate({input$tcgaFileTypeFilter})
    if(str_length(file.type) == 0) file.type <- FALSE

    # access: we will only work with open access data
    #access <- isolate({input$tcgaAcessFilter})
    #if(str_length(access) == 0) access <- FALSE
    access <- "open"

    legacy <- isolate({as.logical(input$tcgaDatabase)})

    # bacode
    text.samples <- isolate({input$tcgaDownloadBarcode})
    if(!is.null(text.samples)){
        barcode <- parse.textarea.input(text.samples)
    }
    if(str_length(barcode) == 0) barcode <- FALSE

    # Samples type
    sample.type <- isolate({input$tcgasamplestypeFilter})

    if(is.null(sample.type)) {
        sample.type <- FALSE
    } else if(str_length(sample.type) == 0) {
        sample.type <- FALSE
    }

    experimental.strategy <- isolate({input$tcgaExpStrategyFilter})
    if(str_length(experimental.strategy) == 0) experimental.strategy <- FALSE

    if(is.null(tumor)){
        createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Data input error", style =  "danger",
                    content = "Please select a project", append = FALSE)
        return(NULL)
    }
    if(is.null(data.category)){
        createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Data input error", style =  "danger",
                    content = "Please select a data.category", append = FALSE)
        return(NULL)
    }

    withProgress(message = 'Accessing GDC',
                 detail = 'This may take a while...', value = 0, {

                     query = tryCatch({
                         query <- GDCquery(project = tumor,
                                           data.category = data.category,
                                           workflow.type = workflow.type,
                                           legacy = legacy,
                                           platform = platform,
                                           file.type = file.type,
                                           access = access,
                                           barcode = barcode,
                                           experimental.strategy = experimental.strategy,
                                           sample.type = sample.type,
                                           data.type = data.type)
                         incProgress(1, detail = "Completed")
                         return(query)
                     }, error = function(e) {
                         createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Error", style =  "danger",
                                     content = "No results for this query", append = FALSE)
                         return(NULL)
                     })
                 })
    if(is.null(query)) {
        createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Error", style =  "danger",
                    content = "No results for this query", append = FALSE)
        return(NULL)
    }
    not.found <- c()
    tbl <- data.frame()
    results <- query$results[[1]]


    #------------------- STEP 2: Clinical features-------------------------
    # In this step we will download indexed clinical data
    # Get the barcodes that repects user inputs
    # And select only the results that respects it
    if(!isolate({input$tcgaMolecularFilterClinical})){
        clinical <- NULL
    } else {
        clinical <- getClinical.info()

        # filter clinical for samples
        clinical <- subset(clinical, clinical$submitter_id %in% substr(results$cases,1,unique(str_length(clinical$submitter_id))))

        stage <- isolate({input$tcgaClinicalTumorStageFilter})
        stage.idx <- NA
        if(!is.null(stage) & all(str_length(stage) > 0)){
            stage.idx <- sapply(stage, function(y) clinical$tumor_stage %in% y)
            stage.idx <- apply(stage.idx,1,any)
        }

        vital.status <- isolate({input$tcgaClinicalVitalStatusFilter})
        vital.status.idx <- NA
        if(!is.null(vital.status) & all(str_length(vital.status) > 0)){
            vital.status.idx <- sapply(vital.status, function(y) clinical$vital_status %in% y)
            vital.status.idx <- apply(vital.status.idx,1,any)
        }
        race <- isolate({input$tcgaClinicalRaceFilter})
        race.idx <- NA
        if(!is.null(race) & all(str_length(race) > 0)){
            race.idx <- sapply(race, function(y) clinical$race %in% y)
            race.idx <- apply(race.idx,1,any)
        }
        gender <- isolate({input$tcgaClinicalGenderFilter})
        gender.idx <- NA
        if(!is.null(gender) & all(str_length(gender) > 0)){
            gender.idx <- sapply(gender, function(y) clinical$gender %in% y)
            gender.idx <- apply(gender.idx,1,any)
        }
        if(any(!is.na(gender.idx),!is.na(race.idx),!is.na(vital.status.idx),!is.na(stage.idx))){
            idx <- apply(data.frame(gender.idx,race.idx,vital.status.idx,stage.idx),1,function(x)all(x,na.rm = TRUE))
            clinical <- clinical[idx,]
        }
        cut <- ifelse(grepl("TARGET",query$project),16,12)
        results <- results[substr(results$cases,1,cut) %in% clinical$bcr_patient_barcode,]
        if(is.null(results) || nrow(results) == 0) {
            createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Error", style =  "danger",
                        content = "No results for this query", append = FALSE)
            return(NULL)
        }
    }
    query$results[[1]] <- results
    list(query,clinical)
})
#----------------------- END controlling show/hide states -----------------
observeEvent(input$tcgaSearchBt, {
    closeAlert(session,"tcgaAlert")
    updateTextInput(session, "tcgafilename", label =  "File name",
                    value = paste0(
                        paste(isolate({input$tcgaProjectFilter}),
                              gsub(" ","_",isolate({input$tcgaDataCategoryFilter})),
                              gsub(" ","_",isolate({input$tcgaDataTypeFilter})),
                              ifelse(isolate({input$tcgaDatabase}),"hg19","hg38"),
                              sep = "_"),".rda"))
    updateCollapse(session, "collapseTCGA", open = "GDC search results")

    output$queryresutlstable <- DT::renderDataTable({
        results <- getResults(query.result()[[1]])
        if(!is.null(results)) createTable(results)
    })

    results <- isolate({getResults(query.result()[[1]])})

    if(any(duplicated(results$cases)) & isolate({input$tcgaDataCategoryFilter}) != "Raw microarray data") {
        createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Warning", style =  "warning",
                    content = "There are more than one file for the same case.", append = FALSE)
    }

    if(is.null(results)){
    } else {


        suppressWarnings({
            output$nb.samples <- renderPlotly({
                results <- getResults(query.result()[[1]])
                if(is.null(results) || nrow(results) == 0) return(plotly_empty())
                df <- data.frame("Samples" = nrow(results),
                                 "Project" = unique(results$project),
                                 "size" = sum(results$file_size/(2^20)))
                p <- plot_ly(data = df,
                             x = ~Project,
                             y = ~Samples,
                             name = "Files size (MB)",
                             type = "bar") %>%
                    layout(yaxis = list(title = "Number of samples")) %>%
                    config(displayModeBar = F)


            })
            output$file.size <- renderPlotly({
                results <- getResults(query.result()[[1]])
                if(is.null(results) || nrow(results) == 0) return(plotly_empty())
                df <- data.frame("Samples" = nrow(results),
                                 "Project" = unique(results$project),
                                 "size" = sum(results$file_size/(2^20)))
                p <- plot_ly(data = df,
                             x = ~Project,
                             y = ~size,
                             hoverinfo = 'text',
                             text=~paste0(size," (MB)"),
                             name = "Files size (MB)",
                             type = "bar") %>%
                    layout(yaxis = list(title = "Files size (MB)")) %>%
                    config(displayModeBar = F)

            })

            getPiePlot <- function(var,title, type = "results"){
                results <- isolate({getResults(query.result()[[1]])})
                if(is.null(results) || nrow(results) == 0) return(plotly_empty())
                if(type == "results") {
                    results <- getResults(query.result()[[1]])
                    df <- as.data.frame(table(results[,var]))
                } else {
                    clinical <- query.result()[[2]]
                    if(is.null(clinical) || nrow(clinical) == 0) return(plotly_empty())
                    df <- as.data.frame(table(clinical[,var]))
                }
                p <- plot_ly(df, labels = ~Var1, values = ~Freq, type = 'pie',
                             textposition = 'inside',
                             textinfo = 'label+percent',
                             insidetextfont = list(color = '#FFFFFF'),
                             hoverinfo = 'text',
                             text=~paste0(Var1,"\n",Freq),
                             marker = list(colors = colors,
                                           line = list(color = '#FFFFFF', width = 1)),
                             #The 'pull' attribute can also be used to create space between the sectors
                             showlegend = FALSE) %>%
                    layout(title = title,
                           xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
                           yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE)) %>%
                    config(displayModeBar = F)
            }

            output$gender <- renderPlotly({
                getPiePlot("gender","Gender", "clinical")
            })
            output$race <- renderPlotly({
                getPiePlot("race","Race", "clinical")
            })
            output$vital.status <- renderPlotly({
                getPiePlot("vital_status","Vital status", "clinical")
            })

            output$tumor.stage <- renderPlotly({
                getPiePlot("tumor_stage","Tumor stage", "clinical")
            })


            output$data.type <- renderPlotly({
                getPiePlot("data_type","Data type")
            })
            output$tissue.definition <- renderPlotly({
                getPiePlot("tissue.definition","Tissue definition")
            })
            output$experimental.strategy <- renderPlotly({
                getPiePlot("experimental_strategy","Experimental strategy")
            })
        })
    }

})

observeEvent(input$tcgaPrepareBt,{
    closeAlert(session,"tcgaAlert")
    query <- isolate({query.result()[[1]]})
    results <- isolate({query$results[[1]]})
    # Dir to save the files
    getPath <- parseDirPath(get.volumes(isolate({input$workingDir})), isolate({input$workingDir}))
    if (length(getPath) == 0) getPath <- paste0(Sys.getenv("HOME"),"/TCGAbiolinksGUI")
    filename <- file.path(getPath,isolate({input$tcgafilename}))
    withProgress(message = 'Download in progress',
                 detail = 'This may take a while...', value = 0, {
                     trash = tryCatch({
                         n <- nrow(results)
                         step <- 20
                         for(i in 0:ceiling(n/step - 1)){
                             query.aux <- query
                             end <- ifelse(((i + 1) * step) > n, n,((i + 1) * step))
                             query.aux$results[[1]] <- query.aux$results[[1]][((i * step) + 1):end,]
                             GDCdownload(query.aux, method = "api",directory = getPath)
                             incProgress(1/ceiling(n/step), detail = paste("Completed ", i + 1, " of ",ceiling(n/step)))
                         }
                         n
                     }, error = function(e) {
                         createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Error", style =  "danger",
                                     content = paste0("Error while downloading the files<br>",e), append = FALSE)
                         return(NULL)
                     })
                 })
    if(query$data.category == "Raw microarray data") {
        files <- dir(file.path(getPath,query$project,"legacy/Raw_microarray_data/Raw_intensities/"),full.names = T,recursive = T)
        to <- file.path(getPath,query$project,"legacy/Raw_microarray_data/Raw_intensities/")
        for(from in files){
            if(basename(dirname(from)) == "Raw_intensities") next
            tryCatch({TCGAbiolinks:::move(from,paste0(to,basename(from)))})
        }
        createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Raw microarray data", style =  "success",
                    content = paste0("Downloaded! To process it go to: processing raw data menu<br>"), append = FALSE)
        return(NULL)
    }
    withProgress(message = 'Prepare progress',
                 detail = 'This may take a while...', value = 0, {
                     trash = tryCatch({
                         genes <- NULL
                         if(isolate({input$addGistic})) genes <- isolate({input$gisticGenes})
                         data <- GDCprepare(query,
                                            save = TRUE,
                                            save.filename = filename,
                                            summarizedExperiment = as.logical(isolate({input$prepareRb})),
                                            directory = getPath,
                                            mut.pipeline = isolate({input$tcgaPrepareMutPipeline}),
                                            add.gistic2.mut = genes)
                         if(is(data, "RangedSummarizedExperiment")){
                             aux <- gsub(".rda","_samples_information.csv",filename)
                             write_csv(x = as.data.frame(colData(data)),path  = aux )
                             filename <- c(filename, aux)
                         }
                         data
                     }, error = function(e) {
                         createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Error", style =  "danger",
                                     content = paste0("Error while preparing the files<br>",e), append = FALSE)
                     })
                     createAlert(session, "tcgasearchmessage", "tcgaAlert", title = "Prepare completed", style =  "success",
                                 content =  paste0("Saved in: ", "<br><ul>", paste(filename, collapse = "</ul><ul>"),"</ul>"), append = FALSE)
                 })

})

getClinical.info <-  reactive({
    project <- input$tcgaProjectFilter
    if(is.null(project) || str_length(project) == 0) return(NULL)

    baseURL <- "https://api.gdc.cancer.gov/cases/?"
    options.pretty <- "pretty=true"
    options.expand <- "expand=diagnoses,demographic"
    option.size <- paste0("size=", TCGAbiolinks:::getNbCases(project, "Clinical"))
    files.data_category <- "Clinical"
    options.filter <- paste0("filters=", URLencode("{\"op\":\"and\",\"content\":[{\"op\":\"in\",\"content\":{\"field\":\"cases.project.project_id\",\"value\":[\""),
                             project, URLencode("\"]}},{\"op\":\"in\",\"content\":{\"field\":\"files.data_category\",\"value\":[\""),
                             files.data_category, URLencode("\"]}}]}"))

    withProgress(message = 'Loading clinical data',
                 detail = 'This may take a while...', value = 0, {
                     json <- jsonlite::fromJSON(paste0(baseURL, paste(options.pretty, options.expand,
                                                                      option.size, options.filter, sep = "&")), simplifyDataFrame = TRUE)
                 })
    results <- json$data$hits
    diagnoses <- rbindlist(results$diagnoses, fill = TRUE)
    diagnoses$submitter_id <- results$submitter_id
    results$demographic$submitter_id <- results$submitter_id
    df <- merge(diagnoses, results$demographic, by = "submitter_id", all = TRUE)
    df$bcr_patient_barcode <- df$submitter_id
    df$disease <- gsub("TCGA-|TARGET-", "", project)
    setDF(df)
    return(df)
})

observe({
    updateSelectizeInput(session, 'tcgaDataTypeFilter', choices =  getDataType(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter), server = TRUE)
    if(is.null(getDataType(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter))) {
        shinyjs::hide("tcgaDataTypeFilter")
    } else {
        shinyjs::show("tcgaDataTypeFilter")
    }
})
observe({
    updateSelectizeInput(session, 'tcgaPlatformFilter', choices =  getPlatform(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter), server = TRUE)
    if(is.null(getPlatform(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter))) {
        shinyjs::hide("tcgaPlatformFilter")
    } else {
        shinyjs::show("tcgaPlatformFilter")
    }
})
observe({
    updateSelectizeInput(session, 'tcgaWorkFlowFilter',
                         choices = getWorkFlow(as.logical(input$tcgaDatabase),input$tcgaDataTypeFilter),
                         server = TRUE)
    if(is.null(getWorkFlow(as.logical(input$tcgaDatabase),input$tcgaDataTypeFilter))) {
        shinyjs::hide("tcgaWorkFlowFilter")
    } else {
        shinyjs::show("tcgaWorkFlowFilter")
    }
})

observe({
    updateSelectizeInput(session, 'tcgaExpStrategyFilter', choices =  getExpStrategy(as.logical(input$tcgaDatabase),input$tcgaPlatformFilter), server = TRUE)
    if(is.null(getExpStrategy(as.logical(input$tcgaDatabase),input$tcgaPlatformFilter))) {
        shinyjs::hide("tcgaExpStrategyFilter")
    } else {
        shinyjs::show("tcgaExpStrategyFilter")
    }
})

observe({
    updateSelectizeInput(session, 'tcgaProjectFilter', choices =  GDCdisease, server = TRUE)
    updateSelectizeInput(session, 'tcgatumorClinicalFilter', choices =  GDCdisease, server = TRUE)
})

observe({
    updateSelectizeInput(session, 'tcgaFileTypeFilter', choices =  getFileType(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter), server = TRUE)
    if(is.null(getFileType(as.logical(input$tcgaDatabase),input$tcgaDataCategoryFilter))) {
        shinyjs::hide("tcgaFileTypeFilter")
    } else {
        shinyjs::show("tcgaFileTypeFilter")
    }
})


observe({
    input$tcgaProjectFilter
    tryCatch({
        clin <- getClinical.info()
        if(!is.null(clin)){
            updateSelectizeInput(session, 'tcgaClinicalGenderFilter', choices =  unique(clin$gender), server = TRUE)
            updateSelectizeInput(session, 'tcgaClinicalVitalStatusFilter', choices =  unique(clin$vital_status), server = TRUE)
            updateSelectizeInput(session, 'tcgaClinicalRaceFilter', choices =  unique(clin$race), server = TRUE)
            updateSelectizeInput(session, 'tcgaClinicalTumorStageFilter', choices =  unique(clin$tumor_stage), server = TRUE)
        }
        shinyjs::show("tcgaClinicalGenderFilter")
        shinyjs::show("tcgaClinicalVitalStatusFilter")
        shinyjs::show("tcgaClinicalRaceFilter")
        shinyjs::show("tcgaClinicalTumorStageFilter")
    }, error = function(e){
        shinyjs::hide("tcgaClinicalGenderFilter")
        shinyjs::hide("tcgaClinicalVitalStatusFilter")
        shinyjs::hide("tcgaClinicalRaceFilter")
        shinyjs::hide("tcgaClinicalTumorStageFilter")
    })
})


observeEvent(input$prepareRb, {
    if(isolate({input$prepareRb})) { # Summarized Experiment
        shinyjs::show("addGistic")
        if(isolate({input$addGistic})){
            shinyjs::show("gisticGenes")
            shinyjs::show("tcgaPrepareMutPipeline")
        } else {
            shinyjs::hide("gisticGenes")
            shinyjs::hide("tcgaPrepareMutPipeline")
        }
    } else {
        shinyjs::hide("addGistic")
        shinyjs::hide("gisticGenes")
        shinyjs::hide("tcgaPrepareMutPipeline")
    }
})

observeEvent(input$addGistic, {
    if(input$addGistic) {
        shinyjs::show("gisticGenes")
    } else {
        shinyjs::hide("gisticGenes")
    }
})


observeEvent(input$tcgaDataTypeFilter,{
    if(input$tcgaDataTypeFilter %in% c( "Isoform Expression Quantification",
                                        "miRNA Expression Quantification",
                                        "Copy Number Segment",
                                        "Masked Copy Number Segment",
                                        "Gene Level Copy Number Scores")){
        updateRadioButtons(session, 'prepareRb', selected = FALSE)
        shinyjs::hide("prepareRb")
    } else {
        updateRadioButtons(session, 'prepareRb', selected = TRUE)
        shinyjs::show("prepareRb")
    }
})

observe({
    updateSelectizeInput(session, 'tcgaDataCategoryFilter', choices =  getDataCategory(as.logical(input$tcgaDatabase)), server = TRUE)
    updateSelectizeInput(session, 'gisticGenes', choices = as.character(sort(TCGAbiolinks:::gene.list)), server = TRUE)
})
BioinformaticsFMRP/TCGAbiolinksGUI documentation built on Aug. 10, 2021, 11:46 p.m.