# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/knn.py
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.mlcore
#' @title An index-based algorithm. It uses a non-parametric method for classification or regression.
#' @description For classification problems, the algorithm queries the k points that are closest to the sample
#' point and returns the most frequently used label of their class as the predicted label. For
#' regression problems, the algorithm queries the k closest points to the sample point and returns
#' the average of their feature values as the predicted value.
#' @export
KNN = R6Class("KNN",
inherit = sagemaker.mlcore::AmazonAlgorithmEstimatorBase,
public = list(
#' @field repo_name
#' sagemaker repo name for framework
repo_name = "knn",
#' @field repo_version
#' version of framework
repo_version = 1,
#' @field .module
#' mimic python module
.module = "sagemaker.amazon.knn",
#' @description k-nearest neighbors (KNN) is :class:`Estimator` used for
#' classification and regression. This Estimator may be fit via calls to
#' :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
#' It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
#' serialized data to be stored in S3. There is an utility
#' :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
#' that can be used to upload data to S3 and creates
#' :class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
#' the `fit` call. To learn more about the Amazon protobuf Record class and
#' how to prepare bulk data in this format, please consult AWS technical
#' documentation:
#' https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html After
#' this Estimator is fit, model data is stored in S3. The model may be
#' deployed to an Amazon SageMaker Endpoint by invoking
#' :meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
#' deploying an Endpoint, deploy returns a
#' :class:`~sagemaker.amazon.knn.KNNPredictor` object that can be used for
#' inference calls using the trained model hosted in the SageMaker
#' Endpoint. KNN Estimators can be configured by setting hyperparameters.
#' The available hyperparameters for KNN are documented below. For further
#' information on the AWS KNN algorithm, please consult AWS technical
#' documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/knn.html
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if accessing AWS resource.
#' @param instance_count (int): Number of Amazon EC2 instances to use
#' for training.
#' @param instance_type (str): Type of EC2 instance to use for training,
#' for example, 'ml.c4.xlarge'.
#' @param k (int): Required. Number of nearest neighbors.
#' @param sample_size (int): Required. Number of data points to be sampled
#' from the training data set.
#' @param predictor_type (str): Required. Type of inference to use on the
#' data's labels, allowed values are 'classifier' and 'regressor'.
#' @param dimension_reduction_type (str): Optional. Type of dimension
#' reduction technique to use. Valid values: "sign", "fjlt"
#' @param dimension_reduction_target (int): Optional. Target dimension to
#' reduce to. Required when dimension_reduction_type is specified.
#' @param index_type (str): Optional. Type of index to use. Valid values are
#' "faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ".
#' @param index_metric (str): Optional. Distance metric to measure between
#' points when finding nearest neighbors. Valid values are
#' "COSINE", "INNER_PRODUCT", "L2"
#' @param faiss_index_ivf_nlists (str): Optional. Number of centroids to
#' construct in the index if index_type is "faiss.IVFFlat" or
#' "faiss.IVFPQ".
#' @param faiss_index_pq_m (int): Optional. Number of vector sub-components to
#' construct in the index, if index_type is "faiss.IVFPQ".
#' @param ... : base class keyword argument values.
initialize = function(role,
instance_count,
instance_type,
k,
sample_size,
predictor_type,
dimension_reduction_type=NULL,
dimension_reduction_target=NULL,
index_type=NULL,
index_metric=NULL,
faiss_index_ivf_nlists=NULL,
faiss_index_pq_m=NULL,
...){
private$.k = Hyperparameter$new("k", list(Validation$new()$ge(1)), "An integer greater than 0", DataTypes$new()$int, obj = self)
private$.sample_size = Hyperparameter$new("sample_size", list(Validation$new()$ge(1)), "An integer greater than 0", DataTypes$new()$int, obj = self)
private$.predictor_type = Hyperparameter$new(
"predictor_type", Validation$new()$isin(c("classifier", "regressor")), 'One of "classifier" or "regressor"', DataTypes$new()$str, obj = self
)
private$.dimension_reduction_target = Hyperparameter$new(
"dimension_reduction_target",
list(Validation$new()$ge(1)),
"An integer greater than 0 and less than feature_dim",
DataTypes$new()$int,
obj = self
)
private$.dimension_reduction_type = Hyperparameter$new(
"dimension_reduction_type", Validation$new()$isin(c("sign", "fjlt")), 'One of "sign" or "fjlt"', DataTypes$new()$str, obj = self
)
private$.index_metric = Hyperparameter$new(
"index_metric",
Validation$new()$isin(c("COSINE", "INNER_PRODUCT", "L2")),
'One of "COSINE", "INNER_PRODUCT", "L2"',
DataTypes$new()$str,
obj = self
)
private$.index_type = Hyperparameter$new(
"index_type",
Validation$new()$isin(c("faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ")),
'One of "faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ"',
DataTypes$new()$str,
obj = self
)
private$.faiss_index_ivf_nlists = Hyperparameter$new("faiss_index_ivf_nlists", list(), '"auto" or an integer greater than 0', DataTypes$new()$str, obj = self)
private$.faiss_index_pq_m = Hyperparameter$new("faiss_index_pq_m", list(Validation$new()$ge(1)), "An integer greater than 0", DataTypes$new()$int, obj = self)
super$initialize(role, instance_count, instance_type, ...)
self$k = k
self$sample_size = sample_size
self$predictor_type = predictor_type
self$dimension_reduction_type = dimension_reduction_type
self$dimension_reduction_target = dimension_reduction_target
self$index_type = index_type
self$index_metric = index_metric
self$faiss_index_ivf_nlists = faiss_index_ivf_nlists
self$faiss_index_pq_m = faiss_index_pq_m
if (!is.null(dimension_reduction_type) && is.null(dimension_reduction_target))
stop('"dimension_reduction_target" is required when "dimension_reduction_type" is set.',
call. = F)
},
#' @description Return a :class:`~sagemaker.amazon.KNNModel` referencing the latest
#' s3 model data produced by this Estimator.
#' @param vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
#' the model. Default: use subnets and security groups from this Estimator.
#' * 'Subnets' (list[str]): List of subnet ids.
#' * 'SecurityGroupIds' (list[str]): List of security group ids.
#' @param ... : Additional kwargs passed to the KNNModel constructor.
create_model = function(vpc_config_override="VPC_CONFIG_DEFAULT",
...){
return(KNNModel$new(
self$model_data,
self$role,
sagemaker_session=self$sagemaker_session,
vpc_config=self$get_vpc_config(vpc_config_override),
...
)
)
},
#' @description Set hyperparameters needed for training. This method will also
#' validate ``source_dir``.
#' @param records (RecordSet) – The records to train this Estimator on.
#' @param mini_batch_size (int or None) – The size of each mini-batch to use
#' when training. If None, a default value will be used.
#' @param job_name (str): Name of the training job to be created. If not
#' specified, one is generated, using the base name given to the
#' constructor if applicable.
.prepare_for_training = function(records,
mini_batch_size=NULL,
job_name=NULL){
super$.prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
}
),
private = list(
# --------- User Active binding to mimic Python's Descriptor Class ---------
.k = NULL,
.sample_size = NULL,
.predictor_type = NULL,
.dimension_reduction_target = NULL,
.dimension_reduction_type = NULL,
.index_metric = NULL,
.index_type = NULL,
.faiss_index_ivf_nlists = NULL,
.faiss_index_pq_m = NULL
),
active = list(
# --------- User Active binding to mimic Python's Descriptor Class ---------
#' @field k
#' Number of nearest neighbors.
k = function(value){
if(missing(value))
return(private$.k$descriptor)
private$.k$descriptor = value
},
#' @field sample_size
#' Number of data points to be sampled from the training data set
sample_size = function(value){
if(missing(value))
return(private$.sample_size$descriptor)
private$.sample_size$descriptor = value
},
#' @field predictor_type
#' Type of inference to use on the data's labels
predictor_type = function(value){
if(missing(value))
return(private$.predictor_type$descriptor)
private$.predictor_type$descriptor = value
},
#' @field dimension_reduction_target
#' Target dimension to reduce to
dimension_reduction_target = function(value){
if(missing(value))
return(private$.dimension_reduction_target$descriptor)
private$.dimension_reduction_target$descriptor = value
},
#' @field dimension_reduction_type
#' Type of dimension reduction technique to use
dimension_reduction_type = function(value){
if(missing(value))
return(private$.dimension_reduction_type$descriptor)
private$.dimension_reduction_type$descriptor = value
},
#' @field index_metric
#' Distance metric to measure between points when finding nearest neighbors
index_metric = function(value){
if(missing(value))
return(private$.index_metric$descriptor)
private$.index_metric$descriptor = value
},
#' @field index_type
#' Type of index to use. Valid values are "faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ".
index_type = function(value){
if(missing(value))
return(private$.index_type$descriptor)
private$.index_type$descriptor = value
},
#' @field faiss_index_ivf_nlists
#' Number of centroids to construct in the index
faiss_index_ivf_nlists = function(value){
if(missing(value))
return(private$.faiss_index_ivf_nlists$descriptor)
private$.faiss_index_ivf_nlists$descriptor = value
},
#' @field faiss_index_pq_m
#' Number of vector sub-components to construct in the index
faiss_index_pq_m = function(value){
if(missing(value))
return(private$.faiss_index_pq_m$descriptor)
private$.faiss_index_pq_m$descriptor = value
}
),
lock_objects = F
)
#' @title Performs classification or regression prediction from input vectors.
#' @description The implementation of
#' :meth:`~sagemaker.predictor.Predictor.predict` in this
#' `Predictor` requires a numpy ``ndarray`` as input. The array should
#' contain the same number of columns as the feature-dimension of the data used
#' to fit the model this Predictor performs inference on.
#' :func:`predict` returns a list of
#' :class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
#' the input ``ndarray``. The prediction is stored in the ``"predicted_label"``
#' key of the ``Record.label`` field.
#' @export
KNNPredictor = R6Class("KNNPredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize KNNPredictor class
#' @param endpoint_name (str): Name of the Amazon SageMaker endpoint to which
#' requests are sent.
#' @param sagemaker_session (sagemaker.session.Session): A SageMaker Session
#' object, used for SageMaker interactions (default: None). If not
#' specified, one is created using the default AWS configuration
#' chain.
initialize = function(endpoint_name,
sagemaker_session=NULL){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=sagemaker.mlcore::RecordSerializer$new(),
deserializer=sagemaker.mlcore::RecordDeserializer$new()
)
}
),
lock_objects = F
)
#' @title Reference S3 model data created by KNN estimator.
#' @description Calling :meth:`~sagemaker.model.Model.deploy`
#' creates an Endpoint and returns :class:`KNNPredictor`.
#' @export
KNNModel = R6Class("KNNModel",
inherit = sagemaker.mlcore::Model,
public= list(
#' @description Initialize KNNModel Class
#' @param model_data (str): The S3 location of a SageMaker model data
#' ``.tar.gz`` file.
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if it needs to access an AWS resource.
#' @param sagemaker_session (sagemaker.session.Session): Session object which
#' manages interactions with Amazon SageMaker APIs and any other
#' AWS services needed. If not specified, the estimator creates one
#' using the default AWS configuration chain.
#' @param ... : Keyword arguments passed to the ``FrameworkModel``
#' initializer.
initialize = function(model_data,
role,
sagemaker_session=NULL,
...){
sagemaker_session = sagemaker_session %||% sagemaker.core::Session$new()
image_uri = sagemaker.core::ImageUris$new()$retrieve(
KNN$public_fields$repo_name,
sagemaker_session$paws_region_name,
version=KNN$public_fields$repo_version
)
super$initialize(
image_uri,
model_data,
role,
predictor_cls=KNNPredictor,
sagemaker_session=sagemaker_session,
...
)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.