# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/ntm.py
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.mlcore
#' @import lgr
#' @title An unsupervised learning algorithm used to organize a corpus of documents into topics
#' @description The resulting topics contain word groupings based on their statistical distribution.
#' Documents that contain frequent occurrences of words such as "bike", "car", "train",
#' "mileage", and "speed" are likely to share a topic on "transportation" for example.
#' @export
NTM = R6Class("NTM",
inherit = sagemaker.mlcore::AmazonAlgorithmEstimatorBase,
public = list(
#' @field repo_name
#' sagemaker repo name for framework
repo_name = "ntm",
#' @field repo_version
#' version of framework
repo_version = 1,
#' @field .module
#' mimic python module
.module = "sagemaker.amazon.ntm",
#' @description Neural Topic Model (NTM) is :class:`Estimator` used for unsupervised
#' learning.
#' This Estimator may be fit via calls to
#' :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
#' It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
#' serialized data to be stored in S3. There is an utility
#' :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
#' that can be used to upload data to S3 and creates
#' :class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
#' the `fit` call.
#' To learn more about the Amazon protobuf Record class and how to
#' prepare bulk data in this format, please consult AWS technical
#' documentation:
#' https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
#' After this Estimator is fit, model data is stored in S3. The model
#' may be deployed to an Amazon SageMaker Endpoint by invoking
#' :meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
#' deploying an Endpoint, deploy returns a
#' :class:`~sagemaker.amazon.ntm.NTMPredictor` object that can be used for
#' inference calls using the trained model hosted in the SageMaker
#' Endpoint.
#' NTM Estimators can be configured by setting hyperparameters. The
#' available hyperparameters for NTM are documented below.
#' For further information on the AWS NTM algorithm, please consult AWS
#' technical documentation:
#' https://docs.aws.amazon.com/sagemaker/latest/dg/ntm.html
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if accessing AWS resource.
#' @param instance_count (int): Number of Amazon EC2 instances to use
#' for training.
#' @param instance_type (str): Type of EC2 instance to use for training,
#' for example, 'ml.c4.xlarge'.
#' @param num_topics (int): Required. The number of topics for NTM to find
#' within the data.
#' @param encoder_layers (list): Optional. Represents number of layers in the
#' encoder and the output size of each layer.
#' @param epochs (int): Optional. Maximum number of passes over the training
#' data.
#' @param encoder_layers_activation (str): Optional. Activation function to
#' use in the encoder layers.
#' @param optimizer (str): Optional. Optimizer to use for training.
#' @param tolerance (float): Optional. Maximum relative change in the loss
#' function within the last num_patience_epochs number of epochs
#' below which early stopping is triggered.
#' @param num_patience_epochs (int): Optional. Number of successive epochs
#' over which early stopping criterion is evaluated.
#' @param batch_norm (bool): Optional. Whether to use batch normalization
#' during training.
#' @param rescale_gradient (float): Optional. Rescale factor for gradient.
#' @param clip_gradient (float): Optional. Maximum magnitude for each gradient
#' component.
#' @param weight_decay (float): Optional. Weight decay coefficient. Adds L2
#' regularization.
#' @param learning_rate (float): Optional. Learning rate for the optimizer.
#' @param ... : base class keyword argument values.
initialize = function(role,
instance_count,
instance_type,
num_topics,
encoder_layers=NULL,
epochs=NULL,
encoder_layers_activation=NULL,
optimizer=NULL,
tolerance=NULL,
num_patience_epochs=NULL,
batch_norm=NULL,
rescale_gradient=NULL,
clip_gradient=NULL,
weight_decay=NULL,
learning_rate=NULL,
...){
private$.num_topics = Hyperparameter$new("num_topics", list(Validation$new()$ge(2), Validation$new()$le(1000)), "An integer in [2, 1000]", DataTypes$new()$int, obj = self)
private$.encoder_layers = Hyperparameter$new(
name="encoder_layers",
validation_message='A comma separated list of " "positive integers',
data_type=as.list,
obj = self
)
private$.epochs = Hyperparameter$new("epochs", list(Validation$new()$ge(1), Validation$new()$le(100)), "An integer in [1, 100]", DataTypes$new()$int, obj = self)
private$.encoder_layers_activation = Hyperparameter$new(
"encoder_layers_activation",
Validation$new()$isin(c("sigmoid", "tanh", "relu")),
'One of "sigmoid", "tanh" or "relu"',
DataTypes$new()$str,
obj = self
)
private$.optimizer = Hyperparameter$new(
"optimizer",
Validation$new()$isin(c("adagrad", "adam", "rmsprop", "sgd", "adadelta")),
'One of "adagrad", "adam", "rmsprop", "sgd" and "adadelta"',
DataTypes$new()$str,
obj = self
)
private$.tolerance = Hyperparameter$new("tolerance", list(Validation$new()$ge(1e-6), Validation$new()$le(0.1)), "A float in [1e-6, 0.1]", DataTypes$new()$float, obj = self)
private$.num_patience_epochs = Hyperparameter$new("num_patience_epochs", list(Validation$new()$ge(1), Validation$new()$le(10)), "An integer in [1, 10]", DataTypes$new()$int, obj = self)
private$.batch_norm = Hyperparameter$new(name="batch_norm", validation_message="Value must be a boolean", data_type=DataTypes$new()$bool, obj = self)
private$.rescale_gradient = Hyperparameter$new("rescale_gradient", list(Validation$new()$ge(1e-3), Validation$new()$le(1.0)), "A float in [1e-3, 1.0]", DataTypes$new()$float, obj = self)
private$.clip_gradient = Hyperparameter$new("clip_gradient", Validation$new()$ge(1e-3), "A float greater equal to 1e-3", DataTypes$new()$float, obj = self)
private$.weight_decay = Hyperparameter$new("weight_decay", list(Validation$new()$ge(0.0), Validation$new()$le(1.0)), "A float in [0.0, 1.0]", DataTypes$new()$float, obj = self)
private$.learning_rate = Hyperparameter$new("learning_rate", list(Validation$new()$ge(1e-6), Validation$new()$le(1.0)), "A float in [1e-6, 1.0]", DataTypes$new()$float, obj = self)
super$initialize(role, instance_count, instance_type, ...)
self$num_topics = num_topics
self$encoder_layers = encoder_layers
self$epochs = epochs
self$encoder_layers_activation = encoder_layers_activation
self$optimizer = optimizer
self$tolerance = tolerance
self$num_patience_epochs = num_patience_epochs
self$batch_norm = batch_norm
self$rescale_gradient = rescale_gradient
self$clip_gradient = clip_gradient
self$weight_decay = weight_decay
self$learning_rate = learning_rate
},
#' @description Return a :class:`~sagemaker.amazon.NTMModel` referencing the latest
#' s3 model data produced by this Estimator.
#' @param vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
#' the model. Default: use subnets and security groups from this Estimator.
#' * 'Subnets' (list[str]): List of subnet ids.
#' * 'SecurityGroupIds' (list[str]): List of security group ids.
#' @param ... : Additional kwargs passed to the NTMModel constructor.
create_model = function(vpc_config_override="VPC_CONFIG_DEFAULT",
...){
return(NTMModel$new(
self$model_data,
self$role,
sagemaker_session=self$sagemaker_session,
vpc_config=self$get_vpc_config(vpc_config_override),
...)
)
},
#' @description Set hyperparameters needed for training. This method will also
#' validate ``source_dir``.
#' @param records (RecordSet) – The records to train this Estimator on.
#' @param mini_batch_size (int or None) – The size of each mini-batch to use
#' when training. If None, a default value will be used.
#' @param job_name (str): Name of the training job to be created. If not
#' specified, one is generated, using the base name given to the
#' constructor if applicable.
.prepare_for_training = function(records,
mini_batch_size,
job_name=NULL){
if (!is.null(mini_batch_size) && (mini_batch_size < 1 | mini_batch_size > 10000))
stop("mini_batch_size must be in [1, 10000]", call. = F)
super$.prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
}
),
private = list(
# --------- User Active binding to mimic Python's Descriptor Class ---------
.num_topics=NULL,
.encoder_layers=NULL,
.epochs=NULL,
.encoder_layers_activation=NULL,
.optimizer=NULL,
.tolerance=NULL,
.num_patience_epochs=NULL,
.batch_norm=NULL,
.rescale_gradient=NULL,
.clip_gradient=NULL,
.weight_decay=NULL,
.learning_rate=NULL
),
active = list(
# --------- User Active binding to mimic Python's Descriptor Class ---------
#' @field num_topics
#' The number of topics for NTM to find within the data
num_topics = function(value){
if(missing(value))
return(private$.num_topics$descriptor)
private$.num_topics$descriptor = value
},
#' @field encoder_layers
#' Represents number of layers in the encoder and the output size of each layer
encoder_layers = function(value){
if(missing(value))
return(private$.encoder_layers$descriptor)
private$.encoder_layers$descriptor = value
},
#' @field epochs
#' Maximum number of passes over the training data.
epochs = function(value){
if(missing(value))
return(private$.epochs$descriptor)
private$.epochs$descriptor = value
},
#' @field encoder_layers_activation
#' Activation function to use in the encoder layers.
encoder_layers_activation = function(value){
if(missing(value))
return(private$.encoder_layers_activation$descriptor)
private$.encoder_layers_activation$descriptor = value
},
#' @field optimizer
#' Optimizer to use for training.
optimizer = function(value){
if(missing(value))
return(private$.optimizer$descriptor)
private$.optimizer$descriptor = value
},
#' @field tolerance
#' Maximum relative change in the loss function within the
#' last num_patience_epochs number of epochs below which
#' early stopping is triggered.
tolerance = function(value){
if(missing(value))
return(private$.tolerance$descriptor)
private$.tolerance$descriptor = value
},
#' @field num_patience_epochs
#' Number of successive epochs over which early stopping criterion is evaluated.
num_patience_epochs = function(value){
if(missing(value))
return(private$.num_patience_epochs$descriptor)
private$.num_patience_epochs$descriptor = value
},
#' @field batch_norm
#' Whether to use batch normalization during training.
batch_norm = function(value){
if(missing(value))
return(private$.batch_norm$descriptor)
private$.batch_norm$descriptor = value
},
#' @field rescale_gradient
#' Rescale factor for gradient
rescale_gradient = function(value){
if(missing(value))
return(private$.rescale_gradient$descriptor)
private$.rescale_gradient$descriptor = value
},
#' @field clip_gradient
#' Maximum magnitude for each gradient component.
clip_gradient = function(value){
if(missing(value))
return(private$.clip_gradient$descriptor)
private$.clip_gradient$descriptor = value
},
#' @field weight_decay
#' Weight decay coefficient.
weight_decay = function(value){
if(missing(value))
return(private$.weight_decay$descriptor)
private$.weight_decay$descriptor = value
},
#' @field learning_rate
#' Learning rate for the optimizer.
learning_rate = function(value){
if(missing(value))
return(private$.learning_rate$descriptor)
private$.learning_rate$descriptor = value
}
),
lock_objects = F
)
#' @title Transforms input vectors to lower-dimesional representations.
#' @description The implementation of
#' :meth:`~sagemaker.predictor.Predictor.predict` in this
#' `Predictor` requires a numpy ``ndarray`` as input. The array should
#' contain the same number of columns as the feature-dimension of the data used
#' to fit the model this Predictor performs inference on.
#' :meth:`predict()` returns a list of
#' :class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
#' the input ``ndarray``. The lower dimension vector result is stored in the
#' ``projection`` key of the ``Record.label`` field.
#' @export
NTMPredictor = R6Class("NTMPredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize NTMPredictor class
#' @param endpoint_name (str): Name of the Amazon SageMaker endpoint to which
#' requests are sent.
#' @param sagemaker_session (sagemaker.session.Session): A SageMaker Session
#' object, used for SageMaker interactions (default: None). If not
#' specified, one is created using the default AWS configuration
#' chain.
initialize = function(endpoint_name,
sagemaker_session=NULL){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=sagemaker.mlcore::RecordSerializer$new(),
deserializer=sagemaker.mlcore::RecordDeserializer$new()
)
}
),
lock_objects = F
)
#' @title Reference NTM s3 model data.
#' @description Calling :meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return a
#' Predictor that transforms vectors to a lower-dimensional representation.
#' @export
NTMModel = R6Class("NTMModel",
inherit = sagemaker.mlcore::Model,
public = list(
#' @description Initialize NTMModel class
#' @param model_data (str): The S3 location of a SageMaker model data
#' ``.tar.gz`` file.
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if it needs to access an AWS resource.
#' @param sagemaker_session (sagemaker.session.Session): Session object which
#' manages interactions with Amazon SageMaker APIs and any other
#' AWS services needed. If not specified, the estimator creates one
#' using the default AWS configuration chain.
#' @param ... : Keyword arguments passed to the ``FrameworkModel``
#' initializer.
initialize = function(model_data,
role,
sagemaker_session=NULL,
...){
sagemaker_session = sagemaker_session %||% sagemaker.core::Session$new()
image_uri = sagemaker.core::ImageUris$new()$retrieve(
NTM$public_fields$repo_name,
sagemaker_session$paws_region_name,
version=NTM$public_fields$repo_version
)
super$initialize(
image_uri,
model_data,
role,
predictor_cls=NTMPredictor,
sagemaker_session=sagemaker_session,
...
)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.