# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/huggingface/model.py
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @title A Predictor for inference against Hugging Face Endpoints.
#' @description This is able to serialize Python lists, dictionaries, and numpy arrays to
#' multidimensional tensors for Hugging Face inference.
#' @export
HuggingFacePredictor = R6Class("HuggingFacePredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize an ``HuggingFacePredictor``.
#' @param endpoint_name (str): The name of the endpoint to perform inference
#' on.
#' @param sagemaker_session (sagemaker.session.Session): Session object that
#' manages interactions with Amazon SageMaker APIs and any other
#' AWS services needed. If not specified, the estimator creates one
#' using the default AWS configuration chain.
#' @param serializer (sagemaker.serializers.BaseSerializer): Optional. Default
#' serializes input data to .npy format. Handles lists and numpy
#' arrays.
#' @param deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
#' Default parses the response from .npy format to numpy array.
initialize = function(endpoint_name,
sagemaker_session=NULL,
serializer=JSONSerializer$new(),
deserializer=JSONDeserializer$new()){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer
)
}
)
)
.validate_pt_tf_versions = function(pytorch_version, tensorflow_version, image_uri){
if (!is.null(image_uri))
return(NULL)
if (!is.null(tensorflow_version) && !is.null(pytorch_version))
ValueError$new(
"tensorflow_version and pytorch_version are both not None. ",
"Specify only tensorflow_version or pytorch_version."
)
if (is.null(tensorflow_version) && is.null(pytorch_version))
ValueError$new(
"tensorflow_version and pytorch_version are both None. ",
"Specify either tensorflow_version or pytorch_version."
)
}
#' @title HuggingFaceModel Class
#' @description A Hugging Face SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``.
#' @export
HuggingFaceModel = R6Class("HuggingFaceModel",
inherit = sagemaker.mlcore::FrameworkModel,
public = list(
#' @description Initialize a HuggingFaceModel.
#' @param model_data (str): The Amazon S3 location of a SageMaker model data
#' ``.tar.gz`` file.
#' @param role (str): An AWS IAM role specified with either the name or full ARN. The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if it needs to access an AWS resource.
#' @param entry_point (str): The absolute or relative path to the Python source
#' file that should be executed as the entry point to model
#' hosting. If ``source_dir`` is specified, then ``entry_point``
#' must point to a file located at the root of ``source_dir``.
#' Defaults to None.
#' @param transformers_version (str): Transformers version you want to use for
#' executing your model training code. Defaults to None. Required
#' unless ``image_uri`` is provided.
#' @param tensorflow_version (str): TensorFlow version you want to use for
#' executing your inference code. Defaults to ``None``. Required unless
#' ``pytorch_version`` is provided. List of supported versions:
#' \url{https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators}.
#' @param pytorch_version (str): PyTorch version you want to use for
#' executing your inference code. Defaults to ``None``. Required unless
#' ``tensorflow_version`` is provided. List of supported versions:
#' \url{https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators}.
#' @param py_version (str): Python version you want to use for executing your
#' model training code. Defaults to ``None``. Required unless
#' ``image_uri`` is provided.
#' @param image_uri (str): A Docker image URI. Defaults to None. If not specified, a
#' default image for PyTorch will be used. If ``framework_version``
#' or ``py_version`` are ``None``, then ``image_uri`` is required. If
#' also ``None``, then a ``ValueError`` will be raised.
#' @param predictor_cls (callable[str, sagemaker.session.Session]): A function
#' to call to create a predictor with an endpoint name and
#' SageMaker ``Session``. If specified, ``deploy()`` returns the
#' result of invoking this function on the created endpoint name.
#' @param model_server_workers (int): Optional. The number of worker processes
#' used by the inference server. If None, server will use one
#' worker per vCPU.
#' @param ... : Keyword arguments passed to the superclass
#' :class:`~sagemaker.model.FrameworkModel` and, subsequently, its
#' superclass :class:`~sagemaker.model.Model`.,
initialize = function(role,
model_data=NULL,
entry_point=NULL,
transformers_version=NULL,
tensorflow_version=NULL,
pytorch_version=NULL,
py_version=NULL,
image_uri=NULL,
predictor_cls=HuggingFacePredictor,
model_server_workers=NULL,
...){
validate_version_or_image_args(transformers_version, py_version, image_uri)
.validate_pt_tf_versions(
pytorch_version=pytorch_version,
tensorflow_version=tensorflow_version,
image_uri=image_uri
)
if (py_version == "py2")
ValueError$new("py2 is not supported with HuggingFace images")
self$framework_version = transformers_version
self$pytorch_version = pytorch_version
self$tensorflow_version = tensorflow_version
self$py_version = py_version
super$initialize(model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, ...)
self$model_server_workers = model_server_workers
attr(self, "_framework_name") = "huggingface"
},
#' @description Creates a model package for creating SageMaker models or listing on Marketplace.
#' @param content_types (list): The supported MIME types for the input data.
#' @param response_types (list): The supported MIME types for the output data.
#' @param inference_instances (list): A list of the instance types that are used to
#' generate inferences in real-time.
#' @param transform_instances (list): A list of the instance types on which a transformation
#' job can be run or on which an endpoint can be deployed.
#' @param model_package_name (str): Model Package name, exclusive to `model_package_group_name`,
#' using `model_package_name` makes the Model Package un-versioned.
#' Defaults to ``None``.
#' @param model_package_group_name (str): Model Package Group name, exclusive to
#' `model_package_name`, using `model_package_group_name` makes the Model Package
#' versioned. Defaults to ``None``.
#' @param image_uri (str): Inference image URI for the container. Model class' self.image will
#' be used if it is None. Defaults to ``None``.
#' @param model_metrics (ModelMetrics): ModelMetrics object. Defaults to ``None``.
#' @param metadata_properties (MetadataProperties): MetadataProperties object.
#' Defaults to ``None``.
#' @param marketplace_cert (bool): A boolean value indicating if the Model Package is certified
#' for AWS Marketplace. Defaults to ``False``.
#' @param approval_status (str): Model Approval Status, values can be "Approved", "Rejected",
#' or "PendingManualApproval". Defaults to ``PendingManualApproval``.
#' @param description (str): Model Package description. Defaults to ``None``.
#' @param drift_check_baselines (DriftCheckBaselines): DriftCheckBaselines object (default: None)
#' @return A `sagemaker.model.ModelPackage` instance.
register = function(content_types,
response_types,
inference_instances,
transform_instances,
model_package_name=NULL,
model_package_group_name=NULL,
image_uri=NULL,
model_metrics=NULL,
metadata_properties=NULL,
marketplace_cert=FALSE,
approval_status=NULL,
description=NULL,
drift_check_baselines=NULL){
instance_type = inference_instances[[1]]
private$.init_sagemaker_session_if_does_not_exist(instance_type)
if (!is.null(image_uri))
self$image_uri = image_uri
if (is.null(self$image_uri))
self$image_uri = self$serving_image_uri(
region_name=self$sagemaker_session$paws_region_name,
instance_type=instance_type
)
return(super$register(
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name,
model_package_group_name,
image_uri,
model_metrics,
metadata_properties,
marketplace_cert,
approval_status,
description,
drift_check_baselines=drift_check_baselines
)
)
},
#' @description A container definition with framework configuration set in model environment variables.
#' @param instance_type (str): The EC2 instance type to deploy this Model to.
#' For example, 'ml.p2.xlarge'.
#' @param accelerator_type (str): The Elastic Inference accelerator type to
#' deploy to the instance for loading and making inferences to the
#' model.
#' @return dict[str, str]: A container definition object usable with the
#' CreateModel API.
prepare_container_def = function(instance_type=NULL,
accelerator_type=NULL){
deploy_image = self$image_uri
if (is.null(deploy_image)){
if (is.null(instance_type))
ValueError$new(
"Must supply either an instance type (for choosing CPU vs GPU) or an image URI."
)
region_name = self$sagemaker_session$paws_region_name
deploy_image = self$serving_image_uri(
region_name, instance_type, accelerator_type=accelerator_type
)
}
deploy_key_prefix = model_code_key_prefix(self$key_prefix, self.name, deploy_image)
private$.upload_code(deploy_key_prefix, repack=True)
deploy_env = list(self$env)
deploy_env= modifyList(deploy_env, private$.framework_env_vars())
if (!is.null(self$model_server_workers))
deploy_env[[toupper(model_parameters$MODEL_SERVER_WORKERS_PARAM_NAME)]] = as.character(self$model_server_workers)
return(container_def(
deploy_image, self$repacked_model_data %||% self$model_data, deploy_env)
)
},
#' @description Create a URI for the serving image.
#' @param region_name (str): AWS region where the image is uploaded.
#' @param instance_type (str): SageMaker instance type. Used to determine device type
#' (cpu/gpu/family-specific optimized).
#' @param accelerator_type (str): The Elastic Inference accelerator type to
#' deploy to the instance for loading and making inferences to the
#' model.
#' @return str: The appropriate image URI based on the given parameters.
serving_image_uri = function(region_name, instance_type, accelerator_type=NULL){
if(!is.null(self$tensorflow_version)) {
base_framework_version = sprintf("tensorflow%s", self$tensorflow_version)
} else {
base_framework_version = sprintf("pytorch%s", self$pytorch_version)
}
return(sagemaker.core::ImageUris$new()$retrieve(
attr(self, "_framework_name"),
region_name,
version=self.framework_version,
py_version=self.py_version,
instance_type=instance_type,
accelerator_type=accelerator_type,
image_scope="inference",
base_framework_version=base_framework_version)
)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.