# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/estimator.py
#' @include mxnet_default.R
#' @include mxnet_model.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @import lgr
#' @title MXNet Class
#' @description Handle end-to-end training and deployment of custom MXNet code.
#' @export
MXNet = R6Class("MXNet",
inherit = sagemaker.mlcore::Framework,
public = list(
#' @field .LOWEST_SCRIPT_MODE_VERSION
#' Lowest MXNet version that can be executed
.LOWEST_SCRIPT_MODE_VERSION = "1.3",
#' @field .module
#' mimic python module
.module = "sagemaker.mxnet.estimator",
#' @description This ``Estimator`` executes an MXNet script in a managed MXNet
#' execution environment, within a SageMaker Training Job. The managed
#' MXNet environment is an Amazon-built Docker container that executes
#' functions defined in the supplied ``entry_point`` Python script.
#' Training is started by calling
#' :meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator.
#' After training is complete, calling
#' :meth:`~sagemaker.amazon.estimator.Framework.deploy` creates a hosted
#' SageMaker endpoint and returns an
#' :class:`~sagemaker.amazon.mxnet.model.MXNetPredictor` instance that can
#' be used to perform inference against the hosted model.
#' Technical documentation on preparing MXNet scripts for SageMaker
#' training and using the MXNet Estimator is available on the project
#' home-page: https://github.com/aws/sagemaker-python-sdk
#' @param entry_point (str): Path (absolute or relative) to the Python source
#' file which should be executed as the entry point to training.
#' If ``source_dir`` is specified, then ``entry_point``
#' must point to a file located at the root of ``source_dir``.
#' @param framework_version (str): MXNet version you want to use for executing
#' your model training code. Defaults to `None`. Required unless
#' ``image_uri`` is provided. List of supported versions.
#' https://github.com/aws/sagemaker-python-sdk#mxnet-sagemaker-estimators.
#' @param py_version (str): Python version you want to use for executing your
#' model training code. One of 'py2' or 'py3'. Defaults to ``None``. Required
#' unless ``image_uri`` is provided.
#' @param source_dir (str): Path (absolute, relative or an S3 URI) to a directory
#' with any other training source code dependencies aside from the entry
#' point file (default: None). If ``source_dir`` is an S3 URI, it must
#' point to a tar.gz file. Structure within this directory are preserved
#' when training on Amazon SageMaker.
#' @param hyperparameters (dict): Hyperparameters that will be used for
#' training (default: None). The hyperparameters are made
#' accessible as a dict[str, str] to the training code on
#' SageMaker. For convenience, this accepts other types for keys
#' and values, but ``str()`` will be called to convert them before
#' training.
#' @param image_uri (str): If specified, the estimator will use this image for training and
#' hosting, instead of selecting the appropriate SageMaker official image based on
#' framework_version and py_version. It can be an ECR url or dockerhub image and tag.
#' Examples:
#' * ``123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0``
#' * ``custom-image:latest``
#' If ``framework_version`` or ``py_version`` are ``None``, then
#' ``image_uri`` is required. If also ``None``, then a ``ValueError``
#' will be raised.
#' @param distribution (dict): A dictionary with information on how to run distributed
#' training (default: None). Currently we support distributed training with
#' parameter server and MPI [Horovod].
#' @param ... : Additional kwargs passed to the
#' :class:`~sagemaker.estimator.Framework` constructor.
initialize = function(entry_point,
framework_version=NULL,
py_version=NULL,
source_dir=NULL,
hyperparameters=NULL,
image_uri=NULL,
distribution=NULL,
...){
kwargs = list(...)
distribution = renamed_kwargs("distributions", "distribution", distribution, kwargs)
instance_type = renamed_kwargs(
"train_instance_type", "instance_type", kwargs$instance_type, kwargs
)
validate_version_or_image_args(framework_version, py_version, image_uri)
self$framework_version = framework_version
self$py_version = py_version
if (!("enable_sagemaker_metrics" %in% names(kwargs))){
# enable sagemaker metrics for MXNet v1.6 or greater:
if (!is.null(self$framework_version) && package_version(self$framework_version) >= package_version("1.6"))
kwargs$enable_sagemaker_metrics = TRUE
}
kwargs = append(
list(
entry_point = entry_point,
source_dir = source_dir,
hyperparameters = hyperparameters,
image_uri = image_uri
),
kwargs
)
do.call(super$initialize, kwargs)
attr(self, "_framework_name") = "mxnet"
if (identical(py_version, "py2"))
LOGGER$warn(
python_deprecation_warning(attr(self, "_framework_name"), MXNET_LATEST_PY2_VERSION)
)
if (!is.null(distribution))
warn_if_parameter_server_with_multi_gpu(
training_instance_type=instance_type, distribution=distribution
)
private$.configure_distribution(distribution)
},
#' @description Create a SageMaker ``MXNetModel`` object that can be deployed to an
#' ``Endpoint``.
#' @param model_server_workers (int): Optional. The number of worker processes
#' used by the inference server. If None, server will use one
#' worker per vCPU.
#' @param role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``,
#' which is also used during transform jobs. If not specified, the
#' role from the Estimator will be used.
#' @param vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
#' the model. Default: use subnets and security groups from this Estimator.
#' * 'Subnets' (list[str]): List of subnet ids.
#' * 'SecurityGroupIds' (list[str]): List of security group ids.
#' @param entry_point (str): Path (absolute or relative) to the local Python source file which
#' should be executed as the entry point to training. If ``source_dir`` is specified,
#' then ``entry_point`` must point to a file located at the root of ``source_dir``.
#' If not specified, the training entry point is used.
#' @param source_dir (str): Path (absolute or relative) to a directory with any other serving
#' source code dependencies aside from the entry point file.
#' If not specified, the model source directory from training is used.
#' @param dependencies (list[str]): A list of paths to directories (absolute or relative) with
#' any additional libraries that will be exported to the container.
#' If not specified, the dependencies from training are used.
#' This is not supported with "local code" in Local Mode.
#' @param image_uri (str): If specified, the estimator will use this image for hosting, instead
#' of selecting the appropriate SageMaker official image based on framework_version
#' and py_version. It can be an ECR url or dockerhub image and tag.
#' Examples:
#' * ``123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0``
#' * ``custom-image:latest``
#' @param ... : Additional kwargs passed to the :class:`~sagemaker.mxnet.model.MXNetModel`
#' constructor.
#' @return sagemaker.mxnet.model.MXNetModel: A SageMaker ``MXNetModel`` object.
#' See :func:`~sagemaker.mxnet.model.MXNetModel` for full details.
create_model = function(model_server_workers=NULL,
role=NULL,
vpc_config_override="VPC_CONFIG_DEFAULT",
entry_point=NULL,
source_dir=NULL,
dependencies=NULL,
image_uri=NULL,
...){
kwargs = list(...)
if (!("image_uri" %in% names(kwargs)))
kwargs$image_uri = image_uri %||% self$image_uri
kwargs$name = private$.get_or_create_name(kwargs$name)
kwargs = append(
list(
model_data = self$model_data,
role = role %||% self$role,
entry_point = entry_point,
framework_version=self$framework_version,
py_version=self$py_version,
source_dir=source_dir %||% private$.model_source_dir(),
container_log_level=self$container_log_level,
code_location=self$code_location,
model_server_workers=model_server_workers,
sagemaker_session=self$sagemaker_session,
vpc_config=self$get_vpc_config(vpc_config_override),
dependencies=(dependencies %||% self$dependencies)
),
kwargs
)
model = do.call(MXNetModel$new, kwargs)
if (is.null(entry_point))
model$entry_point = (
if (model$.__enclos_env__$private$.is_mms_version())
self$entry_point
else private$.model_entry_point()
)
return(model)
}
),
private = list(
.configure_distribution = function(distribution){
if (is.null(distribution))
return(invisible(NULL))
if (!is.null(self$framework_version) &&
package_version(self$framework_version) < package_version(self$.LOWEST_SCRIPT_MODE_VERSION))
ValueError$new(sprintf(
"The distribution option is valid for only versions %s and higher",
self$.LOWEST_SCRIPT_MODE_VERSION)
)
enabled = distribution$parameter_server$enabled %||% FALSE
self$.hyperparameters[[self$LAUNCH_PS_ENV_NAME]] = enabled
if(islistempty(distribution$mpi)){
mpi_dict = distribution$mpi
mpi_enabled = mpi_dict$enabled %||% FALSE
self$.hyperparameters[[self$LAUNCH_MPI_ENV_NAME]] = mpi_enabled
if(!islistempty(mpi_dict$processes_per_host)){
self$.hyperparameters[[self$MPI_NUM_PROCESSES_PER_HOST]] = mpi_dict$processes_per_host
self$.hyperparameters[[self$MPI_CUSTOM_MPI_OPTIONS]] = mpi_dict$custom_mpi_options %||% ""
}
}
},
# Convert the job description to init params that can be handled by the
# class constructor
# Args:
# job_details: the returned job details from a describe_training_job
# API call.
# model_channel_name (str): Name of the channel where pre-trained
# model data will be downloaded.
# Returns:
# dictionary: The transformed init_params
.prepare_init_params_from_job_description = function(job_details,
model_channel_name=NULL){
init_params = super$.prepare_init_params_from_job_description(
job_details, model_channel_name
)
image_uri = init_params$image_uri
init_params$image_uri = NULL
img_split = framework_name_from_image(image_uri)
names(img_split) = c("framework", "py_version", "tag", "scriptmode")
# We switched image tagging scheme from regular image version (e.g. '1.0') to more
# expressive containing framework version, device type and python version
# (e.g. '0.12-gpu-py2'). For backward compatibility map deprecated image tag '1.0' to a
# '0.12' framework version otherwise extract framework version from the tag itself.
if (is.null(img_split$tag)) {
framework_version = NULL
} else if (img_split$tag == "1.0") {
framework_version = "0.12"
} else {
framework_version = framework_version_from_tag(img_split$tag)}
init_params$framework_version = framework_version
init_params$py_version = img_split$py_version
if (is.null(img_split$framework)) {
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params$image_uri = image_uri
return(init_params)}
if (img_split$framework != attr(self, "_framework_name"))
stop(sprintf(
"Training job: %s didn't use image for requested framework",
job_details$TrainingJobName),
call. = F)
return(init_params)
}
),
lock_object = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.