# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/estimator.py
#' @include mxnet_default.R
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @import lgr
#' @title MXNetPredictor Class
#' @description A Predictor for inference against MXNet Endpoints.
#' This is able to serialize Python lists, dictionaries, and numpy arrays to
#' multidimensional tensors for MXNet inference.
#' @export
MXNetPredictor = R6Class("MXNetPredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize an ``MXNetPredictor``.
#' @param endpoint_name (str): The name of the endpoint to perform inference
#' on.
#' @param sagemaker_session (sagemaker.session.Session): Session object which
#' manages interactions with Amazon SageMaker APIs and any other
#' AWS services needed. If not specified, the estimator creates one
#' using the default AWS configuration chain.
#' @param serializer (callable): Optional. Default serializes input data to
#' json. Handles dicts, lists, and numpy arrays.
#' @param deserializer (callable): Optional. Default parses the response using
#' ``json.load(...)``.
initialize = function(endpoint_name,
sagemaker_session=NULL,
serializer = JSONSerializer$new(),
deserializer=JSONDeserializer$new()){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer
)
}
),
lock_objects = F
)
#' @title MXNetModel Class
#' @description An MXNet SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``.
#' @export
MXNetModel = R6Class("MXNetModel",
inherit = sagemaker.mlcore::FrameworkModel,
public = list(
#' @field .LOWEST_MMS_VERSION
#' Lowest Multi Model Server MXNet version that can be executed
.LOWEST_MMS_VERSION = "1.4.0",
#' @description Initialize an MXNetModel.
#' @param model_data (str): The S3 location of a SageMaker model data
#' ``.tar.gz`` file.
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if it needs to access an AWS resource.
#' @param entry_point (str): Path (absolute or relative) to the Python source
#' file which should be executed as the entry point to model
#' hosting. If ``source_dir`` is specified, then ``entry_point``
#' must point to a file located at the root of ``source_dir``.
#' @param framework_version (str): MXNet version you want to use for executing
#' your model training code. Defaults to ``None``. Required unless
#' ``image_uri`` is provided.
#' @param py_version (str): Python version you want to use for executing your
#' model training code. Defaults to ``None``. Required unless
#' ``image_uri`` is provided.
#' @param image_uri (str): A Docker image URI (default: None). If not specified, a
#' default image for MXNet will be used.
#' If ``framework_version`` or ``py_version`` are ``None``, then
#' ``image_uri`` is required. If also ``None``, then a ``ValueError``
#' will be raised.
#' @param predictor_cls (callable[str, sagemaker.session.Session]): A function
#' to call to create a predictor with an endpoint name and
#' SageMaker ``Session``. If specified, ``deploy()`` returns the
#' result of invoking this function on the created endpoint name.
#' @param model_server_workers (int): Optional. The number of worker processes
#' used by the inference server. If None, server will use one
#' worker per vCPU.
#' @param ... : Keyword arguments passed to the superclass
#' :class:`~sagemaker.model.FrameworkModel` and, subsequently, its
#' superclass :class:`~sagemaker.model.Model`.
initialize = function(model_data,
role,
entry_point,
framework_version=NULL,
py_version=NULL,
image_uri=NULL,
predictor_cls=MXNetPredictor,
model_server_workers=NULL,
...){
validate_version_or_image_args(framework_version, py_version, image_uri)
self$framework_version = framework_version
self$py_version = py_version
super$initialize(
model_data=model_data,
image_uri=image_uri,
role=role,
entry_point=entry_point,
predictor_cls=predictor_cls,
...)
self$model_server_workers = model_server_workers
attr(self, "_framework_name") = "mxnet"
if (identical(py_version, "py2"))
LOGGER$warn(
python_deprecation_warning(attr(self, "_framework_name"), MXNET_LATEST_PY2_VERSION)
)
},
#' @description Return a container definition with framework configuration set in
#' model environment variables.
#' @param instance_type (str): The EC2 instance type to deploy this Model to.
#' For example, 'ml.p2.xlarge'.
#' @param accelerator_type (str): The Elastic Inference accelerator type to
#' deploy to the instance for loading and making inferences to the
#' model. For example, 'ml.eia1.medium'.
#' @return dict[str, str]: A container definition object usable with the
#' CreateModel API.
prepare_container_def = function(instance_type=NULL,
accelerator_type=NULL){
deploy_image = self$image_uri
if (is.null(deploy_image)){
if (is.null(instance_type))
ValueError$new(
"Must supply either an instance type (for choosing CPU vs GPU) or an image URI."
)
region_name = self$sagemaker_session$paws_region_name
deploy_image = self$serving_image_uri(
region_name, instance_type, accelerator_type=accelerator_type)
}
deploy_key_prefix = model_code_key_prefix(self$key_prefix, self$name, deploy_image)
private$.upload_code(deploy_key_prefix, private$.is_mms_version())
deploy_env = self$env
deploy_env = c(deploy_env, private$.framework_env_vars())
if (!islistempty(self$model_server_workers))
deploy_env[[toupper(model_parameters$MODEL_SERVER_WORKERS_PARAM_NAME)]] = as.character(self$model_server_workers)
return (container_def(
deploy_image, self$repacked_model_data %||% self$model_data, deploy_env)
)
},
#' @description Create a URI for the serving image.
#' @param region_name (str): AWS region where the image is uploaded.
#' @param instance_type (str): SageMaker instance type. Used to determine device type
#' (cpu/gpu/family-specific optimized).
#' @param accelerator_type (str): The Elastic Inference accelerator type to
#' deploy to the instance for loading and making inferences to the
#' model (default: None). For example, 'ml.eia1.medium'.
#' @return str: The appropriate image URI based on the given parameters.
serving_image_uri = function(region_name,
instance_type,
accelerator_type=NULL){
return(sagemaker.core::ImageUris$new()$retrieve(
attr(self, "_framework_name"),
region_name,
version=self$framework_version,
py_version=self$py_version,
instance_type=instance_type,
accelerator_type=accelerator_type,
image_scope="inference")
)
}
),
private = list(
# Whether the framework version corresponds to an inference image using
# the Multi-Model Server (https://github.com/awslabs/multi-model-server).
# Returns:
# bool: If the framework version corresponds to an image using MMS.
.is_mms_version=function(){
lowest_mms_version = package_version(self$.LOWEST_MMS_VERSION)
framework_version = package_version(self$framework_version)
return (framework_version >= lowest_mms_version)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.