# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/sklearn/model.py
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @import lgr
#' @title A Predictor for inference against Scikit-learn Endpoints.
#' @description This is able to serialize Python lists, dictionaries, and numpy arrays to
#' multidimensional tensors for Scikit-learn inference.
#' @export
SKLearnPredictor = R6Class("SKLearnPredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize an ``SKLearnPredictor``.
#' @param endpoint_name (str): The name of the endpoint to perform inference
#' on.
#' @param sagemaker_session (sagemaker.session.Session): Session object which
#' manages interactions with Amazon SageMaker APIs and any other
#' AWS services needed. If not specified, the estimator creates one
#' using the default AWS configuration chain.
#' @param serializer (sagemaker.serializers.BaseSerializer): Optional. Default
#' serializes input data to .npy format. Handles lists and numpy
#' arrays.
#' @param deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
#' Default parses the response from .npy format to numpy array.
initialize = function(endpoint_name,
sagemaker_session=NULL,
serializer=NumpySerializer$new(),
deserializer=NumpyDeserializer$new()){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer
)
}
),
lock_objects = F
)
#' @title SKLearnModel Class
#' @description An Scikit-learn SageMaker ``Model`` that can be deployed to a SageMaker
#' ``Endpoint``.
#' @export
SKLearnModel = R6Class("SKLearnModel",
inherit = sagemaker.mlcore::FrameworkModel,
public = list(
#' @description Initialize an SKLearnModel.
#' @param model_data (str): The S3 location of a SageMaker model data
#' ``.tar.gz`` file.
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon
#' SageMaker training jobs and APIs that create Amazon SageMaker
#' endpoints use this role to access training data and model
#' artifacts. After the endpoint is created, the inference code
#' might use the IAM role, if it needs to access an AWS resource.
#' @param entry_point (str): Path (absolute or relative) to the Python source
#' file which should be executed as the entry point to model
#' hosting. If ``source_dir`` is specified, then ``entry_point``
#' must point to a file located at the root of ``source_dir``.
#' @param framework_version (str): Scikit-learn version you want to use for
#' executing your model training code. Defaults to ``None``. Required
#' unless ``image_uri`` is provided.
#' @param py_version (str): Python version you want to use for executing your
#' model training code (default: 'py3'). Currently, 'py3' is the only
#' supported version. If ``None`` is passed in, ``image_uri`` must be
#' provided.
#' @param image_uri (str): A Docker image URI (default: None). If not specified, a
#' default image for Scikit-learn will be used.
#' If ``framework_version`` or ``py_version`` are ``None``, then
#' ``image_uri`` is required. If also ``None``, then a ``ValueError``
#' will be raised.
#' @param predictor_cls (callable[str, sagemaker.session.Session]): A function
#' to call to create a predictor with an endpoint name and
#' SageMaker ``Session``. If specified, ``deploy()`` returns the
#' result of invoking this function on the created endpoint name.
#' @param model_server_workers (int): Optional. The number of worker processes
#' used by the inference server. If None, server will use one
#' worker per vCPU.
#' @param ... : Keyword arguments passed to the ``FrameworkModel``
#' initializer.
initialize = function(model_data,
role,
entry_point,
framework_version=NULL,
py_version="py3",
image_uri=NULL,
predictor_cls=SKLearnPredictor,
model_server_workers=NULL,
...){
validate_version_or_image_args(framework_version, py_version, image_uri)
if (!is.null(py_version) && py_version != "py3")
stop("Scikit-learn image only supports Python 3. Please use 'py3' for py_version.",
call. = F)
self$framework_version = framework_version
self$py_version = py_version
super$initialize(
model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, ...)
attr(self, "_framework_name") = "sklearn"
self$model_server_workers = model_server_workers
},
#' @description Return a container definition with framework configuration set in
#' model environment variables.
#' @param instance_type (str): The EC2 instance type to deploy this Model to.
#' This parameter is unused because Scikit-learn supports only CPU.
#' @param accelerator_type (str): The Elastic Inference accelerator type to
#' deploy to the instance for loading and making inferences to the
#' model. This parameter is unused because accelerator types
#' are not supported by SKLearnModel.
#' @return dict[str, str]: A container definition object usable with the
#' CreateModel API.
prepare_container_def = function(instance_type=NULL,
accelerator_type=NULL){
if (!is.null(accelerator_type))
stop("Accelerator types are not supported for Scikit-Learn.",
call. = F)
deploy_image = self$image_uri
if (is.null(deploy_image))
deploy_image = self$serving_image_uri(
self$sagemaker_session$paws_region_name, instance_type
)
deploy_key_prefix = model_code_key_prefix(self$key_prefix, self$name, deploy_image)
private$.upload_code(key_prefix=deploy_key_prefix, repack=self$enable_network_isolation())
deploy_env = self$env
deploy_env = c(deploy_env, private$.framework_env_vars())
if (!is.null(self$model_server_workers))
deploy_env[[toupper(model_parameters$MODEL_SERVER_WORKERS_PARAM_NAME)]] = as.character(self$model_server_workers)
model_data_uri = if (self$enable_network_isolation()) self$repacked_model_data else self$model_data
return(container_def(deploy_image, model_data_uri, deploy_env))
},
#' @description Create a URI for the serving image.
#' @param region_name (str): AWS region where the image is uploaded.
#' @param instance_type (str): SageMaker instance type.
#' @return str: The appropriate image URI based on the given parameters.
serving_image_uri = function(region_name,
instance_type){
return(sagemaker.core::ImageUris$new()$retrieve(
attr(self, "_framework_name"),
region_name,
version=self$framework_version,
py_version=self$py_version,
instance_type=instance_type)
)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.